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1. What is WeBrain 

WeBrain is a web-based computing platform that enables large-scale EEG and 

EEG-fMRI multimodal data storing, exploring and analyzing using cloud 

High-Performance Computing (HPC) facilities across UESTC and China. WeBrain 

connects researchers of different fields to EEG and multimodal tools and processing 

power required to handle the large datasets that have become the norm in the field. It 

also aims to construct an International Virtual Community of Brainformatics (IVCB) 

to set the scene for more ambitious multi-national initiatives and cooperation in brain 

research. It does at the same time reduce the technical expertise required to use these 

resources. It provides an easy-to-use for novice users (even no computer 

programming skills) and flexibility for experienced researchers. It is not necessary to 

install any software or system for users, all need is a modern web browser of any kind. 

A range of resources including neuroimaging analysis tools are available, as well as 

documents related to WeBrain. Below are tools integrated in the WeBrain as yet. 

2. Data input of Tools 

Currently, in the WeBrain, EEG data of each subject should be zipped as a separated 

zip file ONLY. For example, a zip file of EEG data (one subject) can be a 

‘Sub_01.zip’, which contains all EEG files generated by EEG system (e.g. files of 

BrainProduct EEG system: sub_01.dat, sub_01.vhdr and sub_01.vmrk) or a folder 

consisting of the EEG files. Here, 3 types of EEG data structures are supported in the 

WeBrain. 

1) Associated with the WeBrain platform, a new and more flexible data structure, 

named the Standard EEG Data Structure (SEDS) is suggested. It is proposed to meet 

the needs of both small-scale EEG data batch processing in single-site studies and 

large-scale EEG data sharing and analysis in single-/multisite studies (especially on 

cloud platforms). Two versions (MATLAB and Docker versions) of the EEG Datafile 

Restructuring Toolbox (DRT) have been developed to restructure EEG data files 

according to the SEDS. The DRT GUI (MATLAB version) dramatically reduces the 

time required for novice researchers, while the DRT (Docker version) is more 

efficient for experienced researchers. All materials including SEDS documents, tools, 

example datasets, etc., are available on the WeBrain website 

(https://webrain.uestc.edu.cn/) and Wiki (https://github.com/WeCloudHub/DRT). 

More details about the SEDS can be seen in the paper: Li Dong et al., 2021, DRT: A 

New Toolbox for the Standard EEG Data Structure in Large-scale EEG Applications, 

submitted. 

2) As an extension to the Brain Imaging Data Structure (BIDS) Specification for 

EEG, BIDS-EEG has been supported in the WeBrain. EEG data files could be 

reorganized as BIDS-EEG using BIDS-MATLAB-TOOLS 

(https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php) first, and then 

https://webrain.uestc.edu.cn/
https://github.com/WeCloudHub/DRT
https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
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zipped as a zip files and uploaded to the WeBrain. More details about BIDS-EEG can 

be seen in the paper Pernet, C. R., et al. (2019). "EEG-BIDS, an extension to the brain 

imaging data structure for electroencephalography." Sci Data 6(1): 103. 

3) For small-scale EEG data, data files could be directly zipped as a zip file by 

hand. The zip file should contain all EEG files generated by EEG system or a folder 

consisting of the EEG files. 

 

Warning: DO NOT enter any blank spaces in the input file names!!! 

If there are any blank spaces in the file names, the WeBrain system 

will rename EEG data file names (it may lead to unexpected errors). 
 

It is strongly suggested to reorganize EEG data files using offline 

tools before uploading these files to the WeBrain platform. 

 

2.1 Load EEG data 

EEGLAB functions (based on eeglab14_1_0b) are used to load various EEG data. 

Currently, supporting EEG data format are:  

 

EEGLAB .set File (recommended) 

The function is ‘pop_importdata()’. It supports reading the EEGLAB dataset files 

(.set). 

ASCII/Float .txt File or MATLAB .mat/.dat File 

The function is ‘pop_importdata()’. When reading a MATLAB .mat file, please 

confirm that it must contain only one MATLAB variable (channels × time points). 

When reading a ASCII .txt file, please confirm that is must contain only EEG data 

with channels × time points. If your data are .txt or .mat files, sampling rate must be 

filled in the parameter box when using some EEG tools. It is suggested to use DRT 

tool (https://webrain.uestc.edu.cn/) to convert EEG data to EEGLAB .set files, by 

writing sampling rate and channel locations. 

Curry 6/7 .dat File 

The function is ‘pop_loadcurry()’. It supports reading NeuroScan Curry6/7 

continuous EEG data files (.dat, .dap and .rs3). 

Curry 8 .cdt File 

The function is ‘pop_loadcurry()’. It supports reading NeuroScan Curry8 continuous 

EEG data files (.cdt, .cdt.ceo and .cdt.dpa). 

NeuroScan .cnt File 

The function is ‘pop_loadcnt()’. It supports reading NeuroScan EEG data files (.cnt). 

Data format 16bit or 32bit will be auto-detected. 

NeuroScan .eeg File 

The function is ‘pop_loadeeg()’. It supports reading the NeuroScan EEG data files 

(.eeg). If the .eeg file is epoched data (channels × time points × trials), some tools 

https://webrain.uestc.edu.cn/
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may be not available. 

Biosemi .bdf/.edf File 

The function is ‘pop_readbdf()’. Based on Biosemi functions, it supports reading 

16-bit European standard "EDF" (European Data Format) and 24-bit BDF (Biosemi 

Data Format). 

Brain Vis. Rec. .vhdr File 

The function is ‘pop_loadbv()’. It supports reading Brain Vision Analyzer data files 

(.dat, .vhdr and .vmrk). 

 

3. EEG Tools 

Warning: DO NOT enter any blank spaces in the input parameters!!! 

 

3.1 WB_EEG_REST 

WB_EEG_REST is a tool of Reference Electrode Standardization Technique (REST) 

in WeBrain. REST is a re-reference technique, a software method for translating 

multichannel spontaneous EEG or event-related potentials with reference at any a 

physical point on brain/body surface or the post-processed data referenced at average 

or linked ears etc. to a new dataset with reference at Infinity where the potential is 

zero/constant (Yao, 2001; Yao et al., 2005). Currently, REST is increasingly 

acknowledged by EEG/ERPs community around the world (to our knowledge, at least 

12 countries/areas), and more than 50 studies have actually adopted REST to get zero 

reference as the foundation of their novel findings. Meanwhile, the REST has been 

regarded as the Rosetta Stone for scalp EEG (Kayser and Tenke, 2010) and listed in 

the new guidelines of International Federation of Clinical Neurophysiology (IFCN) 

for EEG analysis. More details about REST toolbox can also be seen in the paper 

(Dong et al., 2017). 

 

Use REST please cite: 

Yao, D., 2001. A method to standardize a reference of scalp EEG recordings to a point 

at infinity. Physiol Meas. 22, 693-711. 

Dong, L., et al., 2017. MATLAB Toolboxes for Reference Electrode Standardization 

Technique (REST) of Scalp EEG. Frontiers in Neuroscience. 11. 

 

Parameters 

lfFile: Leadfield file.The leadfield can be a matrix (*.dat, output of leadfield.exe, 

sources X channels) which is calculated by using the forward theory, based on 

the electrode montage, head model and equivalent source model. It can also be 

the output of ft_prepare_leadfield.m (e.g. lf.leadfield) based on real head 

modal using FieldTrip. 
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rechanns: string with indices of the re-referenced channels (channels re-referencing to 

REST, e.g. ‘[1:4,7:30]’), or ‘all’. 

 

Outputs 

For each subject, a zip file which contain the re-referenced EEG data will be 

generated (saved as EEG .set file which contains the EEG potentials with zero 

reference, channels × time points). 

 

Leadfield Calculation 

The leadfield matrix is required to be calculated for a new electrode system. It can be 

the output of ft_prepare_leadfield.m (e.g. lf.leadfield) based on real head modal using 

FieldTrip. Users can also download the ‘Leadfield.exe’ to calculate a leadfield matrix 

of a concentric-three-spheres head model. It calculates the leadfield matrix from the 

3000 cortical dipoles (spherical equivalent dipoles) and the newly given electrode 

array for the canonical concentric-three-spheres head model. The array of real 

electrode coordinates (coordinates of fiducial points are not required) is suggested to 

be saved in a ‘*.txt’ ASCII file with their Cartesian x (the left ear is defined as -x axis), 

y (the nasion is the +y axis), z coordinates in three columns, while the coordinates 

will be auto-normalized and -matched to the upper spherical cap of head model inside 

the program. In addition, noting that the executable file ‘Leadfield.exe’ is compiled 

using C language on Windows system to calculate the leadfield matrix; if you want to 

run it on Linux system (Ubuntu), a simple solution is to install the ‘Wine’ software 

first (i.e. enter the command ‘sudo apt-get install wine’ in a terminal). The leadfield 

calculation consists of the following 2 steps. 

    1. File → Load Electrode File: ‘*.txt’ ASCII file; x, y, z positions in three 

columns only; 

    2. File → Calculate Lead Field. It may take a few minutes that depends on the 

size of the matrix and the computer. When the calculation is completed, the leadfield 

matrix is saved as ‘Lead_Field.dat’ (sources × channels) in the directory of 

electrode file. 

 

Note 

The reference of input EEG data should be a scalp point (e.g. the tip of the nose, 

vertex, linked mastoids or linked ears) or average reference. 

 

Links 

REST:  

http://www.neuro.uestc.edu.cn/rest/  

 

REST software 

http://www.neuro.uestc.edu.cn/rest/Down.html  

 

http://www.neuro.uestc.edu.cn/rest/
http://www.neuro.uestc.edu.cn/rest/Down.html
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EEGLAB 

http://sccn.ucsd.edu/eeglab/index.html  

 

FieldTrip 

http://www.fieldtriptoolbox.org/start  

http://www.fieldtriptoolbox.org/reference/ft_prepare_leadfield  

http://www.fieldtriptoolbox.org/development/project/example_fem  

http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_fem?s[]=fem&s[]=headmodel  

 

3.2 WB_EEG_Mark 

WB_EEG_Mark is a tool to automatically mark bad block/good quality EEG data 

based on thresholding z-scores/global field power (Fig. 1). It is recommended before 

calculating EEG indices (e.g. power, networks) or ERPs. Steps of marking EEG data 

consist of: 

[1] Filtering all EEG data (Passband filtering and Notch filter) 

[2] Z-transforming the EEG data/calculating global field power. Per channel/electrode 

every time point is z-normalized (mean subtracted and divided by standard 

deviation). Or the z-scored standard deviation (global field power, GFP) of the 

signal at all selected electrodes is calculated. 

[3] Averaging z-values/using global field power over channels/electrodes allows 

evidence for an artifact to accumulate and averaging it over channels. 

[4] Threshold the accumulated z-score/global field power for each epoch/window. 

Bad blocks are labeled by ‘9999’ (EEG.event.type is ‘9999’, percentage 

(absolute value) above threshold > 1% for each small epoch). Good quality data 

are labeled by ‘2001’ (EEG.event.type is ‘2001’, percentage (absolute value) 

above threshold < 5% for each small epoch). If bad blocks with label ‘9999’ 

already existed, the bad block data will be NOT marked as good quality data. 

 

http://sccn.ucsd.edu/eeglab/index.html
http://www.fieldtriptoolbox.org/start
http://www.fieldtriptoolbox.org/reference/ft_prepare_leadfield
http://www.fieldtriptoolbox.org/development/project/example_fem
http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_fem?s%5b%5d=fem&s%5b%5d=headmodel
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Fig. 1: Pipeline of automatically marking bad block/good quality EEG data. 

 

Parameters 

passband: Passband of filtering. Default is ‘[1,60]’. If passband is empty (‘[]’), 

bandpass filtering will be skipped. 

NotchBand: Band of notch filter. Default is ‘[45,55]’. In China, power frequency is 

50Hz, while it is 60 Hz in USA. If max(passband)<min(NotchBand) or 

NotchBand is empty, notch filtering will be skipped. 

flag1: flag1 = 0: mark bad blocks (Default); flag1 = 1: mark good quality data. 

flag2: flag2 = 0: global field power (Default); flag2 = 1: z-tranforming. 

Thre: Threshold of z-score/global field power. Default of global field power (z-scored 

standard deviation) is 3. For various EEG data, the threshold may be changed 

by user flexibly. 

WinLenth: Length of the window (small epoch). Unit is second. Default is 1 sec. 

seleChanns: String with indices of the selected channels (e.g. ‘[1:4,7:30]’), or ‘all’. 

Default is ‘all’. 
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srate: Sampling rate of EEG data. It can be automatically detected from EEG data, if 

it is ‘[]’. But for ASCII/Float .txt File and MATLAB .mat File, users should 

fill the sampling rate by hand. Default is ‘[]’. 

 

Outputs 

For each subject, a zip file which contains the marked EEG data (saved as EEG .set 

file which contains the mark events) will be generated. Bad blocks are labeled by 

‘9999’ (EEG.event.type is ‘9999’). Good quality data were labeled by ‘2001’ 

(EEG.event.type is ‘2001’).  

EEG.MarkPercent: Percentage of marked event (duration). 

EEG.dataZ: Z-score or z-scored global field power of data. 

 

Links 

 

Automatic artifact rejection in FieldTrip 

http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection  

 

3.3 WB_EEG_runICA 

WB_EEG_runICA is a tool to run ICA on EEG data based on EEGLAB function - 

runica(). It perform Independent Component Analysis (ICA) decomposition of input 

data using the logistic infomax ICA algorithm of Bell & Sejnowski (1995) with the 

natural gradient feature of Amari, Cichocki & Yang, or optionally the extended-ICA 

algorithm of Lee, Girolami & Sejnowski, with optional PCA dimension reduction. 

Annealing based on weight changes is used to automate the separation process. ICA is 

usually used to remove artifact (e.g. eye blink) or extract features (e.g. ERP) from 

EEG data. 

 

Parameters 

selechanns: number with indices of the selected channels (e.g. ‘[1:4,7:30]’ or ‘all’). 

Default is ‘all’. 

ICs: Number of ICA components. Default is number of EEG channels or number of 

retained PCs. Noting that we usually run ICA using many more trials that the 

sample decomposition presented here. As a general rule, finding N stable 

components (from N-channel data) typically requires more than kN2 data 

sample points (at each channel), where N2 is the number of weights in the 

unmixing matrix that ICA is trying to learn and k is a multiplier. The value of 

k will increase as the number of channels increases. When data are insufficient, 

then using the ‘pca’ option (Set the number of PCs to retain) to find fewer than 

N components may be the only good option. This parameter may return 

strange results. This is because the weight matrix is rectangular instead of 

being square. 

http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection
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Ntrain : Perform tanh() "extended-ICA" with sign estimation N training blocks. If N > 

0, automatically estimate the number of sub-Gaussian sources. If N < 0, fix 

number of sub-Gaussian comps to -N [faster than N>0] (default is 0 -> off). 

The "runica" Infomax algorithm can only select for components with a 

supergaussian activity distribution (i.e., more highly peaked than a Gaussian, 

something like an inverted T). If there is strong line noise in the data, it is 

preferable to set the training blocks as 1, so the algorithm can also detect 

subgaussian sources of activity, such as line current and/or slow activity. 

PCs: decompose a principal component (default = [] -> off, i.e. default is NOT 

performing PCA analysis.) subspace of the data. Value is the number of PCs to 

retain. 

stop: stop training when weight-change < this (default is 1e-6, if less than 33 channel 

1e-7 is recommended). 

maxsteps: max number of ICA training steps. Default is 512. 

sphering: [‘on’/’off’] flag sphering of data. Default is ‘on’. 

 

 

Note: EEG data will be imported as EEG structure using EEGLAB. EEG.data should 

be channels × time points OR channels × time points × epochs. 

 

Outputs 

For each subject, a zip file which contain the EEG dataset with new fields icaweights, 

icasphere and icachansind (channel indices). (saved as EEG .set file which contains 

the ICA results). The EEG dataset can also be imported and used in EEGLAB. 

 

EEG.icasphere: ICA sphere; 

EEG.icaweights: ICA weights; 

EEG.icachansind: selcet channels; 

EEG.activations: ICA components. If EEG data is epoched, the activations 

(corresponding to ICA time courses) will be generated; 

EEG.icawinv = pinv(icaweights * icasphere); % a priori same result as inv. 

 

EEG.ICAPara.ICs: number of ICA components; 

EEG.ICAPara.Ntrain: perform tanh() "extended-ICA" with sign estimation N training 

blocks; 

EEG.ICAPara.PCs: the number of PCs to retain. 

EEG.ICAPara.stop: stop training when weight-change < this. 

EEG.ICAPara.MaxSteps: max number of ICA training steps; 

EEG.ICAPara.sphering: flag sphering of data; 
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3.4 WB_EEG_QA 

WB_EEG_QA is a stable tool to realize quality assessment (QA) of a continuous 

EEG raw data (e.g, resting-state EEG data). The bad data in small windows of each 

channel could be detected by kinds of 4 methods, and a number of indices related to 

the data quality will be calculated. Meanwhile, the overall data quality rating will be 

also provided, including levels of A, B, C, D (corresponding to perfect, good, poor, 

bad). The QA consists of (Fig. 2): 

[1] A continuous EEG data of each channel will be high pass filtered (>1Hz) and then 

segmented as small windows; 

[2] Detecting constant or NaN/Inf signals in each window (Method 1). The windows 

containing any NaN/Inf or with tiny SD/median values (<10-10) are considered as 

bad windows. 

[3] Detecting unusually high or low amplitude using robust standard deviation across 

time points in each window (Method 2). If the z-score of robust time deviation 

falls below a threshold or the absolute amplitude exceeds a value of microvolts 

(150μV), the window is considered to be bad. 

[4] Detecting high or power frequency noises in each window by calculating the 

noise-to-signal ratio (NSR) based on Christian Kothe's method (Method 3). If the 

z-score of estimate of signal above 40/50Hz (power frequency minus 10 Hz) to 

that below 40/50 Hz above a threshold or absolute NSR exceeds 0.5, the small 

window is considered to be bad. 

[5] Detecting low correlations with other channels in each window using Pearson 

correlation (default) or RANSAC correlation (Method 4). If the maximum 

correlation (absolute correlation coefficients) of the window of a channel to the 

other channels falls below a threshold, the window is considered bad. 

[6] Calculating a number of indices relative to the data quality and rating the EEG raw 

data. 

More details about the QA tool can be seen in the paper: Zhao et al., 2021, 

Quantitative signal quality assessment for large-scale continuous scalp EEG with big 

data perspective, submitted. 
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Fig. 2: Pipeline of quality assessment of continuous EEG raw data. (1) Raw EEG data 

with artifacts such as eye blink, eye movement etc. (2) The continuous EEG data of 

each channel will be high pass filtered and then segmented as small windows. Here 

‘WindowSeconds’ is the window size (e.g. 1 sec.) over which the following methods 

are conducted. (3) Detecting constant or NaN/Inf signals in each window (Method 1). 

(4) Detecting unusually high or low amplitude using robust standard deviation across 

time points in each window (Method 2). If the z score of robust time deviation falls 

below ‘robustDeviationThreshold’ or the absolute amplitude exceeds 150 microvolts 

(μV), the small window is considered to be bad. (5) Detecting high or power 

frequency noises in each window by calculating the noise-to-signal ratio based on 

Christian Kothe's method (Method 3) (clean_rawdata0.32 

https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR) ). If the z score 

of estimate of signal above 40 Hz (power frequency - 10Hz) to that below 40 Hz 

above ‘highFrequencyNoiseThreshold’ or absolute NSR exceeds 0.5, the small 

window is considered to be bad. Noting that if the sampling rate is below 2×power 

frequency, this step will be skipped. (6) Detecting low correlations with other 

channels in each window using Pearson correlation (default) or RANSAC correlation 

(Method 4). For Pearson correlation, if the maximum correlation of the window of a 

https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR)
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channel to the other channels falls below ‘correlationThreshold’, the window is 

considered bad. For RANSAC correlation (Bigdely-Shamlo et al., 2015), each 

window of a channel is predicted using RANSAC interpolation based on a RANSAC 

fraction of the channels. If the correlation of the prediction to the actual behavior falls 

below ‘ransacCorrelationThreshold’ or calculation is too long, the window is marked 

as bad. The time cost of this method is high, and the channel locations are required. 

The RANSAC correlation is optional and default is not performed. (7) Calculating a 

number of indices relative to the data quality and rating the EEG raw data. 

 

Parameters 

WindowSeconds: the window size (in seconds, default = 1 sec.) over which the above 

methods are conducted. 

HighPassband: lower edge of the frequency for high pass filtering. Default is 1 Hz. 

seleChanns: number with indices of the selected EEG channels (e.g. ‘[1:4,7:30]’ or 

‘all’). Default is ‘all’. 

badWindowThreshold: cutoff fraction of bad windows (default = 0.4) for detecting 

bad channels. 

robustDeviationThreshold: Z-score cutoff for robust time deviation in each window 

(default = 5). 

PowerFrequency: power frequency. Default is 50 Hz (in Chinese). Noting that in USA, 

power frequency is 60Hz. 

FrequencyNoiseThreshold: Z-score cutoff for NSR (signal above power frequency - 

10Hz). Default is 3. If the z score of estimate of signal above 40 Hz (power 

frequency - 10Hz) to that below 40 Hz above ‘highFrequencyNoiseThreshold’ 

or absolute NSR exceeds 0.5, the small window is considered to be bad. 

flagNotchFilter : flagNotchFilter = 1: remove 0.5×power frequency noise using 

notch filtering. Default is off (flagNotchFilter = 0). 

correlationThreshold: maximal correlation below which window is bad (range is (0,1), 

default = 0.6). If the maximum correlation of the window of a channel to the 

other channels falls below ‘correlationThreshold’, the window is considered 

bad. 

ransacCorrelationThreshold: cutoff correlation for abnormal wrt neighbors(default = [] 

| --> not performed). 

ransacChannelFraction: fraction of channels for robust reconstruction (default = 0.3). 

ransacSampleSize: samples for computing RANSAC (default = 50). 

srate: sampling rate of EEG data. It can be automatically detected in EEG data. But 

for ASCII/Float .txt File or MATLAB .mat File, user should fill the sampling 

rate by hand. Default is ‘[]’. 

 

Note:  

 Assumptions of QA tool: 

   - The signal is a structure of continuous data with data and sampling rate at least. 
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   - No segments of the EEG data have been removed. 

 Noting that quality assessing EEG raw data would NOT change the raw data. 

 If channel locations are not contained in EEG data or selected channels do not 

contain channel locations, the RANSAC correlation is invalid. 

 Noting that if the sampling rate is below 2×power frequency, the step of 

detecting high or power frequency noises will be skipped. 

 

Outputs 

For each subject, a mat file which contains a structure array of QA results will be 

generated (saved as results_QA_*.mat file which contains the QA results and 

parameters of each step). Meanwhile, a table file named QA_table.mat which lists all 

indices of all subjects (including calculated and skipped subjects) in a table will be 

generated at same time. 

 

results_QA.ONS: Overall ratio of No Signal windows. The ONS ranges from 0 to 1. 

The ONS = 0 if and only if there is no NaN or constant signals in the data. In 

contrast, the ONS = 1 for all NaN or constant signals; 

results_QA.OHA: Overall ratio of High Amplitude windows. The OHA ranges from 0 

to 1. The OHA = 0 if and only if there is no high amplitude window in the data, 

and the OHA = 1 for all are high amplitude bad windows in the data; 

results_QA.OFN: Overall ratio of high Frequency Noise windows. The OFN ranges 

from 0 to 1. The OFN = 0 if and only if there is no high frequency noise window 

in the data, and the OFN = 1 for all are high amplitude bad windows in the data; 

results_QA.OLC: Overall ratio of Low Correlation windows. The OLC ranges from 0 

to 1. The OLC = 0 if and only if there is no low correlation windows in the data, 

and the OLC = 1 for all windows are low correlation bad windows in the data; 

results_QA.OLRC: Overall ratio of windows of Low RANSAC Correlation (optional). 

The OLRC = 0 if and only if there is no low correlation windows in the data, and 

the OLRC = 1 for all windows are low correlation bad windows in the data; 

results_QA.badChannels: The index of bad channels of which the ratio of the bad 

quality windows exceed a certain threshold (0.4 by default); 

results_QA.NBC: No. of Bad Channels; 

results_QA.OBC: Overall ratio of Bad Channels. The OBC tends to 0 for no bad 

channels and to 1 for all bad channels; 

results_QA.OBClus: Overall ratio of Bad Clusters. The number of the connected 

components of the bad quality windows. This measure can describe the situations 

of the bad quality windows in the data. OBClus tends to 1 for a wide noises in 

the data, to 0 for no bad clusters. The lower of OBClus is, the less part of EEG 

signals is contaminated. If ODQs of two EEG data are same, the quality of the 

data with lower OBClus is better than another; 

results_QA.ODQ: Overall Data Quality: the overall ratio of good data windows. The 

ODQ ranges from 0 to 100. The ODQ = 0 if and only if there is no good window 
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in the data, and the ODQ = 100 for all are good windows in the data; 

results_QA.DataQualityRating: Overall Data Quality Rating 

Level A: ODQ >= 90; 

Level B: ODQ >= 80 && ODQ < 90; 

Level C: ODQ >= 60 && ODQ < 80; 

 Level D: ODQ < 60; 

results_QA.allMAV: mean absolute value of all windows; 

results_QA.badMAV: mean absolute value of bad windows; 

results_QA.goodMAV: mean absolute value of good windows; 

results_QA.NoSignalMask: a mask of windows with no signals (with dimension 

channels × windows);  

results_QA.AmpliChannelMask: a mask of windows with high amplitudes (with 

dimension channels × windows); 

results_QA.FrequencyNoiseMask: a mask of windows with high frequency (and 

power frequency, if applicable) noise (with dimension channels × windows); 

results_QA.LowCorrelationMask: a mask of windows with low correlations (with 

dimension channels × windows); 

results_QA.RansacBadWindowMask: a mask of windows with RANSAC low 

correlations (with dimension channels × windows); 

results_QA.OverallBadMask: a mask of windows with overall bad signals (with 

dimension channels × windows); 

results_QA.fractionBadWindows: fractions of bad windows for each channel (with 

dimension channels × 1); 

results_QA.badChannelsFromAll: logical value of bad channels from all methods 

(with dimension channels × 1). 

 

Parameter details: 

 

results_QA.parameters.srate: sampling rate; 

results_QA.parameters.WindowSeconds: window size in seconds (default = 1 sec); 

results_QA.parameters.HighPassband: lower edge of the frequency for high pass 

filtering, Hz; 

results_QA.parameters.selechanns: number with indices of the selected channels (e.g. 

[1:4,7:30] or ‘all’).Default is ‘all’; 

results_QA.parameters.badWindowThreshold: cutoff fraction of bad windows; 

results_QA.parameters.PowerFrequency: power frequency. Default is 50 Hz (in 

Chinese). Noting that in USA, power frequency is 60Hz; 

results_QA.parameters.robustDeviationThreshold: Z-score cutoff for robust channel 

deviation; 

results_QA.parameters.FrequencyNoiseThreshold: Z-score cutoff for nosie-to-signal 

ratio (signal above 40 Hz); 

results_QA.parameters.correlationThreshold: maximal correlation below which 
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window is bad (range is (0,1)); 

results_QA.parameters.chanlocsflag: flag of channel locations. if chanlocsflag = 1: 

have channel locations; 

results_QA.parameters.chanlocsXYZ: xyz coordinates of selected channels; 

results_QA.parameters.chanlocs: channel locations of selected channels; 

results_QA.parameters.ransacSampleSize: samples for computing RANSAC (default 

= 50); 

results_QA.parameters.ransacChannelFraction: fraction of channels for robust 

reconstruction (default = 0.3); 

results_QA.parameters.ransacCorrelationThreshold: cutoff correlation for abnormal 

wrt neighbors(default = [] | --> not performed). 

 

3.5 WB_EEG_prepro 

WB_EEG_prepro is a specific and stable tool to perform standardized preprocessing 

of continuous EEG raw data to remove a kind of artifacts (e.g. resting state EEG data), 

and obtain clean EEG data with REST reference. It is supported to preprocess EEG 

raw data with single point, average or linked LM reference. Preprocessing EEG raw 

data consists of (Fig. 3): 

[1] Quality assessment of EEG raw data first. Noting that quality assessment (QA) do 

NOT change the EEG raw data. If the overall data quality (ODQ) exceed a 

threshold (default is 80), then the preprocessing could be continue; 

[2] Passband and notch filtering, if applicable; 

[3] Artifact removal: EOG regression; 

[4] Artifact removal: residual artifact removal; 

[5] Bad channel interpolation and re-referencing to REST; 

[6] Quality assessment of preprocessed EEG data after artifact removal; 

[7] Marking residual bad block with unusually high or low amplitude (>6) using 

z-scored STD across channels, and then clean EEG data with REST reference are 

obtained finally. 
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Fig. 3: Pipeline of standardized preprocessing of continuous EEG raw data. (1) Raw 

EEG data with artifacts such as eye blink, eye movement etc. (2) Quality assessment 

of EEG raw data, automatically. If the overall data quality (ODQ) exceed a threshold 

(ranging from 0-100, default is 80), then the preprocessing could be continue. The 

EEG raw data will be assessed by kinds of methods, and bad channels will be 

identified at same time. More details can be seen in WB_EEG_QA. (3) Passband and 

notch filtering (if applicable). The data can be filtered first using Hamming windowed 
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sinc FIR filter. (4) Artifact removal: EOG regression. A linear regression model will 

be utilized to remove EOG artifacts using z-scored EOG channels (5) Artifact removal: 

residual artifact removal. The residual artifacts will be removed using common used 

methods. Currently, a kind of 4 common used methods are provided in the WeBrain, 

including ICA based Multiple Artifact Rejection Algorithm (MARA), ICA based 

ADJUST, robust PCA and artifact subspace reconstruction (ASR) methods. (6) Bad 

channel interpolation and re-referencing to REST. For interpolation, reference 

electrode standardization interpolation technique (RESIT) and spherical spline 

interpolation (SSI) are provided in the WeBrain. (7) Quality assessment of 

preprocessed EEG data after artifact removal. (8) Marking residual bad block with 

unusually high or low amplitude using z-scored standard deviation (STD>6) across 

channels. Bad blocks will be marked as label 9999 using WB_EEG_Mark. (9) Clean 

EEG data with REST reference are obtained finally. 

 

Parameters 

seleChanns: number with indices of the selected channels (e.g. ‘[1:4,7:30]’ or ‘all’). 

Default is ‘all’. 

EOGchanns: number with indices of the EOG channels. Default is ‘[]’. 

thre_ODQ: threshold of overall data quality (ODQ). If ODQ ≥ a threshold, then the 

preprocessing could be continue. Default is 80. Noting that the quality 

assessment (QA) would NOT change the EEG raw data, and some default QA 

parameters are fixed in the preprocessing tool (window size is 1 sec, lower 

edge of the frequency for high pass filtering is 1 Hz, cutoff fraction of bad 

windows is 0.4, Z-score cutoff for robust channel deviation is 5, Z-score cutoff 

for noise-to-signal rate is 3 and correlation threshold is 0.6). 

passband: passband of filtering. Default is ‘[1,40]’. 

PowerFrequency: power frequency. Default is 50 Hz (in Chinese). Noting that in USA, 

power frequency is 60Hz. 

keepUnselectChannsFlag:  

keepUnselectChannsFlag = 0: do not keep unselected channels (default); 

keepUnselectChannsFlag = 1: keep all channels. 

badChannelInterploateFlag:  

badChannelInterploateFlag = 0: do NOT interpolate, and if have channel 

locations in EEG.chanlocs, then re-referencing to REST (Dong et al., 

2017; Yao, 2001); 

badChannelInterploateFlag = 1 (default): interpolate the bad channels rows of 

EEG.data using reference electrode standardization interpolation 

technique (RESIT); default is using RESIT (The bad channels will be 

interpolated with REST reference (Dong et al., 2017; Dong et al., 2021; 

Yao, 2001)); 

badChannelInterploateFlag = 2: interpolate the bad channels rows of EEG.data 

using spherical spline interpolation (SSI) (Perrin et al., 1989), and 
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re-referencing to REST. 

residualArtifactRemovalFlag:  

residualArtifactRemovalFlag = 0: no removal; 

residualArtifactRemovalFlag = 1: ICA based MARA (Multiple Artifact 

Rejection Algorithm) (Winkler et al., 2011); 

residualArtifactRemovalFlag = 2: ICA based ADJUST (Mognon et al., 2011); 

residualArtifactRemovalFlag = 3: rPCA method (Lin et al., 2010); 

residualArtifactRemovalFlag = 4: ASR method (Mullen et al., 2013). 

MARA_thre: cuttoff posterior probability for each IC of being an artefact while using 

MARA method. Default is 0.7. 

srate: sampling rate of EEG data. It can be automatically detected in EEG data. But 

for ASCII/Float .txt File or MATLAB .mat File, user should fill the sampling 

rate by hand. Default is ‘[]’. 

 

Note:  

 Noting that quality assessing EEG raw data would NOT change the raw data. If 

the overall data quality (ODQ) exceed a threshold (default is 80), then the 

preprocessing could be continue. 

 EEG data will be imported as EEG structure of EEGLAB. Dimension of 

EEG.data must be channels × time points.  

 If channel locations are not contained in EEG data or selected channels do not 

contain locations, methods required EEG channel coordinates are invalid (e.g. 

interpolation, ICA-based MARA, ICA-based ADJUST, and REST re-referencing 

etc.). 

 It is suggested to use this tool to preprocess EEG raw data with single 

point/AVG/linked LM reference. It is not supported for the EEG raw data with a 

specific non-unipolar recording montage, such as the ipsilateral mastoid (IM) or 

the contralateral mastoid (CM). 

 

Outputs 

For each subject, a zip file which contains the preprocessed EEG data will be 

generated (saved as *_prepro.set file which contains the clean EEG data (EEG.data 

with dimension channels × time points) and preprocessing info (parameters and 

results of each preprocessing step). The file can be further analyzed by WeBrain 

online or EEGLAB offline. Following fields will be further added in the *.set file. 

 

EEG.preprocessed.PassbandFilter.check = ‘yes’ or ‘no’ for pass band filtering; 

EEG.preprocessed.PassbandFilter.passband: pass band; 

EEG.preprocessed.PassbandFilter.comments = ‘Hamming windowed sinc FIR filter’; 

EEG.preprocessed.NotchFilter.check = ‘yes’ or ‘no’ for notch filtering; 

EEG.preprocessed.NotchFilter.notchband: notch filtering band; 

EEG.preprocessed.EOGregression.check = ‘yes’ or ‘no’ for EOG regression 
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EEG.preprocessed.EOGregression.EOGchanns = EOG channels; 

 

EEG.preprocessed.residualArtifactRemoval.check = ‘no’: skip residual artifact 

removal; 

EEG.preprocessed.residualArtifactRemoval.MARA.check = ‘yes’ : use ICA-based 

MARA method to remove residual artifacts; more details can be seen in I. 

Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual 

ICA-components for artifact removal in EEG signals, Behavioral and Brain 

Functions, 7, 2011. 

EEG.preprocessed.residualArtifactRemoval.MARA.ICs: number of ICA components 

to compute (default is 'pca' arg);  

EEG.preprocessed.residualArtifactRemoval.MARA.ICANtrain: perform tanh() 

"extended-ICA" with sign estimation N training blocks; default is 0; 

EEG.preprocessed.residualArtifactRemoval.MARA.ICAstop: ICA stop training when 

weight-change < this; 

EEG.preprocessed.residualArtifactRemoval.MARA.ICAMaxSteps: max number of 

ICA training steps; 

EEG.preprocessed.residualArtifactRemoval.MARA.ICAsphering: [‘on’/‘off’] flag 

sphering of data; default is ‘on’; 

EEG.preprocessed.residualArtifactRemoval.MARA.artcomps: list of artifacted ICs 

detected by MARA; 

EEG.preprocessed.residualArtifactRemoval.MARA.MARAinfo: structure containing 

more information about MARA classification; 

MARAinfo.posterior_artefactprob: posterior probability for each IC of being an 

artefact. 

MARAinfo.normfeats: <6 x nIC > features computed by MARA for each IC, 

normalized by the training data. The features are: (1) Current Density Norm, 

(2) Range in Pattern, (3) Local Skewness of the Time Series, (4) Lambda, (5) 

8-13 Hz, (6) FitError.  

EEG.preprocessed.residualArtifactRemoval.MARA.MARA_thre: cuttoff posterior 

probability for each IC of being an artefact while using MARA method; 

 

EEG.preprocessed.residualArtifactRemoval.ADJUST.check = ‘yes’: use ICA-based 

ADJUST method to remove residual artifacts; More details about ADJUST can 

be seen in Mognon A, Jovicich J, Bruzzone L, Buiatti M, ADJUST: An 

Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal 

features. Psychophysiology 48 (2), 229-240 (2011). 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICs: number of ICA 

components to compute (default is 'pca' arg);  

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICANtrain: perform tanh() 

"extended-ICA" with sign estimation N training blocks; default is 0; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICAstop: ICA stop training 
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when weight-change < this; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICAMaxSteps: max number of 

ICA training steps; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICAsphering: ['on'/'off'] flag 

sphering of data; default is ‘on’; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.artcomps: list of artifacted ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.horizcomps: list of horizontal 

eye movement (HEM) ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.vertcomps: list of vertical eye 

movement (VEM) ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.blinkcomps: list of eye blink 

(EB) ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.disccomps: list of GD ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_DV: SVD threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.diff_var: SVD feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_K: TK threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.meanK: TK feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_SED: SED threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.SED: SED feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_SAD: SAD threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.SAD: SAD feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_GDSF: GDSF threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.GDSF: GDSF feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_V: MEV threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.nuovaV: MEV feature values; 

 

EEG.preprocessed.residualArtifactRemoval.rPCA.check = ‘yes’: use robust PCA to 

remove residual artifacts; 

EEG.preprocessed.residualArtifactRemoval.rPCA.lambda: weight on sparse error 

term in the cost function; 

EEG.preprocessed.residualArtifactRemoval.rPCA.tol: tolerance for stopping criterion; 

EEG.preprocessed.residualArtifactRemoval.rPCA.maxIter: maximum number of 

iterations; 

 

EEG.preprocessed.residualArtifactRemoval.ASR.check = ‘yes’: use ASR method to 

remove residual artifacts; more details about ASR can be seen in the tool 

‘clean_rawdata’; 

EEG.preprocessed.residualArtifactRemoval.ASR.burst_crit: standard deviation cutoff 

for removal of bursts (via ASR).A quite conservative value is 5; 

EEG.preprocessed.residualArtifactRemoval.ASR.burst_crit_refmaxbadchns: this 

number is the maximum tolerated (0.05-0.3) fraction of "bad" channels within a 

given time window of the recording that is considered acceptable for use as 
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calibration data; 

EEG.preprocessed.residualArtifactRemoval.ASR.burst_crit_reftolerances: these are 

the power tolerances outside of which a channel in a given time window is 

considered "bad", in standard deviations relative to a robust EEG power 

distribution (lower and upper bound). Together with the previous parameter this 

determines how ASR calibration data is be extracted from a recording. Can also 

be specified as 'off' to achieve the same effect as in the previous parameter. 

Default is [-3.5,5.5]; 

 

EEG.preprocessed.Interpolation.check = ‘no’: skip bad channel interpolation and 

re-referencing to REST only (if have channel locations); 

EEG.preprocessed.Interpolation.comments = ‘re-referencing to REST based on 

3-concentric spheres head model’; 

 

EEG.preprocessed.RESITinterpolation.check = ‘yes’: use RESIT method to 

reconstruct bad channels; 

EEG.preprocessed.RESITinterpolation.badchanns: list of bad channels; 

EEG.preprocessed.RESITinterpolation.comments = ‘REST based on 3-concentric 

spheres head model’; 

EEG.preprocessed.SphericalSplinesInterpolation.comments = ‘re-referencing to 

REST based on 3-concentric spheres head model’; 

 

EEG.preprocessed.SphericalSplinesInterpolation.check = ‘yes’: use SSI method to 

reconstruct bad channels; 

EEG.preprocessed.SphericalSplinesInterpolation.badchanns: list of bad channels; 

 

EEG.preprocessed.QA.check = ‘yes’: QA after artifact removal; 

EEG.preprocessed.QA.comments = ‘QA after artifact removal’; 

EEG.preprocessed.QA.results: results of QA for artifact removed data; 

 

EEG.preprocessed.MarkBadBlock.check = ‘yes’ or ‘no’: marking or no marking 

residual bad block with unusually high or low amplitude using zscored standard 

deviation; 

EEG.preprocessed.MarkBadBlock.comments = ‘Marking residual bad block after 

artifact removal’; 

EEG.preprocessed.MarkBadBlock.zscoredGFP: global field power of z-scored 

standard deviation across channels; 

EEG.preprocessed.MarkBadBlock.STDthreshold: standard deviation threshold; it is 

equal to the Z-score cutoff for robust channel deviation in QA. 

 

Links: 

Some EEG preprocessing tools: 
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https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR)  

https://www.nitrc.org/projects/adjust/ 

https://github.com/methlabUZH/automagic 

https://github.com/germangh/eeglab_plugin_aar  

https://github.com/VisLab/EEG-Clean-Tools  

https://github.com/bwrc/ctap 

 

3.6 WB_EEG_prepro_cm 

WB_EEG_prepro_cm is a specific and stable tool to perform standardized 

preprocessing of continuous EEG raw data to remove a kind of artifacts (e.g. resting 

state EEG data), and obtain clean EEG data with REST reference. It is supported for 

the EEG raw data with a specific non-unipolar recording montage, such as the 

ipsilateral mastoid (IM) or the contralateral mastoid (CM). Preprocessing EEG raw 

data consists of (Fig. 4): 

[1] Quality assessment of EEG raw data first. Noting that quality assessment (QA) do 

NOT change the EEG raw data. If the overall data quality (ODQ) exceed a 

threshold (default is 80), then the preprocessing could be continue; 

[2] Passband and notch filtering, if applicable; 

[3] Artifact removal: EOG regression; 

[4] Artifact removal: residual artifact removal; 

[5] Bad channel interpolation and re-referencing to REST; 

[6] Quality assessment of preprocessed EEG data after artifact removal; 

[7] Marking residual bad block with unusually high or low amplitude (>6) using 

z-scored STD across channels, and then clean EEG data with REST reference are 

obtained finally. 

 

https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR)
https://www.nitrc.org/projects/adjust/
https://github.com/methlabUZH/automagic
https://github.com/germangh/eeglab_plugin_aar
https://github.com/VisLab/EEG-Clean-Tools
https://github.com/bwrc/ctap
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Fig. 4: Pipeline of standardized preprocessing of continuous EEG raw data. (1) Raw 

EEG data with artifacts such as eye blink, eye movement etc. (2) Quality assessment 

of EEG raw data, automatically. If the overall data quality (ODQ) exceed a threshold 

(ranging from 0-100, default is 80), then the preprocessing could be continue. The 

EEG raw data will be assessed by kinds of methods, and bad channels will be 

identified at same time. More details can be seen in WB_EEG_QA. (3) Passband and 

notch filtering (if applicable). The data can be filtered first using Hamming windowed 
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sinc FIR filter. (4) Artifact removal: EOG regression. A linear regression model will 

be utilized to remove EOG artifacts using z-scored EOG channels (5) Artifact removal: 

residual artifact removal. The residual artifacts will be removed using common used 

methods. Currently, a kind of 4 common used methods are provided in the WeBrain, 

including ICA based Multiple Artifact Rejection Algorithm (MARA), ICA based 

ADJUST, robust PCA and artifact subspace reconstruction (ASR) methods. (6) Bad 

channel interpolation and re-referencing to REST. For interpolation, reference 

electrode standardization interpolation technique (RESIT) and spherical spline 

interpolation (SSI) are provided in the WeBrain. (7) Quality assessment of 

preprocessed EEG data after artifact removal. (8) Marking residual bad block with 

unusually high or low amplitude using z-scored standard deviation (STD>6) across 

channels. Bad blocks will be marked as label 9999 using WB_EEG_Mark. (9) Clean 

EEG data with REST reference are obtained finally. 

 

Parameters 

leftchanns: index of left channels excluding left Reference (e.g. left mastoid). e.g. 

‘[1:2:16]’; 

rightchanns: index of right channels excluding right Reference (e.g. right mastoid). 

e.g. ‘[2:2:16]’; 

xyz_leftRef: coordinates of reference for left channels, e.g. ‘[-0.309,0.9511,0]’. The 

row is xyz coordinates of reference for left channels. 

xyz_rightRef: coordinates of reference for right channels, e.g. ‘[-0.309,-0.9511,0]’. 

The row is xyz coordinates of reference for right channels. 

EOGchanns: number with indices of the EOG channels. Default is ‘[]’. 

thre_ODQ: threshold of overall data quality (ODQ). If ODQ ≥ a threshold, then the 

preprocessing could be continue. Default is 80. Noting that the quality 

assessment (QA) would NOT change the EEG raw data, and some default QA 

parameters are fixed in the preprocessing tool (window size is 1 sec, lower 

edge of the frequency for high pass filtering is 1 Hz, cutoff fraction of bad 

windows is 0.4, Z-score cutoff for robust channel deviation is 5, Z-score cutoff 

for noise-to-signal rate is 3 and correlation threshold is 0.6). 

passband: passband of filtering. Default is ‘[1,40]’. 

PowerFrequency: power frequency. Default is 50 Hz (in Chinese). Noting that in USA, 

power frequency is 60Hz. 

keepUnselectChannsFlag:  

keepUnselectChannsFlag = 0: do not keep unselected channels (default); 

keepUnselectChannsFlag = 1: keep all channels. 

badChannelInterploateFlag:  

badChannelInterploateFlag = 0: do NOT interpolate, and if have channel 

locations in EEG.chanlocs, then re-referencing to REST (Dong et al., 

2017; Yao, 2001); 

badChannelInterploateFlag = 1 (default): interpolate the bad channels rows of 
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EEG.data using reference electrode standardization interpolation 

technique (RESIT); default is using RESIT (The bad channels will be 

interpolated with REST reference (Dong et al., 2017; Dong et al., 2021; 

Yao, 2001)); 

badChannelInterploateFlag = 2: interpolate the bad channels rows of EEG.data 

using spherical spline interpolation (SSI) (Perrin et al., 1989), and 

re-referencing to REST. 

residualArtifactRemovalFlag:  

residualArtifactRemovalFlag = 0: no removal; 

residualArtifactRemovalFlag = 1: ICA based MARA (Multiple Artifact 

Rejection Algorithm) (Winkler et al., 2011); 

residualArtifactRemovalFlag = 2: ICA based ADJUST (Mognon et al., 2011); 

residualArtifactRemovalFlag = 3: rPCA method (Lin et al., 2010); 

residualArtifactRemovalFlag = 4: ASR method (Mullen et al., 2013). 

MARA_thre: cuttoff posterior probability for each IC of being an artefact while using 

MARA method. Default is 0.7. 

srate: sampling rate of EEG data. It can be automatically detected in EEG data. But 

for ASCII/Float .txt File or MATLAB .mat File, user should fill the sampling 

rate by hand. Default is ‘[]’. 

 

Note:  

 Noting that quality assessing EEG raw data would NOT change the raw data. If 

the overall data quality (ODQ) exceed a threshold (default is 80), then the 

preprocessing could be continue. 

 EEG data will be imported as EEG structure of EEGLAB. Dimension of 

EEG.data must be channels × time points.  

 If channel locations are not contained in EEG data or selected channels do not 

contain locations, methods required EEG channel coordinates are invalid (e.g. 

interpolation, ICA-based MARA, ICA-based ADJUST, and REST re-referencing 

etc.). 

 It is supported for the EEG raw data with a specific non-unipolar recording 

montage, such as the ipsilateral mastoid (IM) or the contralateral mastoid (CM) 

ONLY. 

 

Outputs 

For each subject, a zip file which contains the preprocessed EEG data will be 

generated (saved as *_prepro.set file which contains the clean EEG data (EEG.data 

with dimension channels × time points) and preprocessing info (parameters and 

results of each preprocessing step). The file can be further analyzed by WeBrain 

online or EEGLAB offline. Following fields will be further added in the *.set file. 

 

EEG.preprocessed.PassbandFilter.check = ‘yes’ or ‘no’ for pass band filtering; 
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EEG.preprocessed.PassbandFilter.passband: pass band; 

EEG.preprocessed.PassbandFilter.comments = ‘Hamming windowed sinc FIR filter’; 

EEG.preprocessed.NotchFilter.check = ‘yes’ or ‘no’ for notch filtering; 

EEG.preprocessed.NotchFilter.notchband: notch filtering band; 

EEG.preprocessed.EOGregression.check = ‘yes’ or ‘no’ for EOG regression 

EEG.preprocessed.EOGregression.EOGchanns = EOG channels; 

 

EEG.preprocessed.residualArtifactRemoval.check = ‘no’: skip residual artifact 

removal; 

EEG.preprocessed.residualArtifactRemoval.MARA.check = ‘yes’ : use ICA-based 

MARA method to remove residual artifacts; more details can be seen in I. 

Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual 

ICA-components for artifact removal in EEG signals, Behavioral and Brain 

Functions, 7, 2011. 

EEG.preprocessed.residualArtifactRemoval.MARA.ICs: number of ICA components 

to compute (default is 'pca' arg);  

EEG.preprocessed.residualArtifactRemoval.MARA.ICANtrain: perform tanh() 

"extended-ICA" with sign estimation N training blocks; default is 0; 

EEG.preprocessed.residualArtifactRemoval.MARA.ICAstop: ICA stop training when 

weight-change < this; 

EEG.preprocessed.residualArtifactRemoval.MARA.ICAMaxSteps: max number of 

ICA training steps; 

EEG.preprocessed.residualArtifactRemoval.MARA.ICAsphering: [‘on’/‘off’] flag 

sphering of data; default is ‘on’; 

EEG.preprocessed.residualArtifactRemoval.MARA.artcomps: list of artifacted ICs 

detected by MARA; 

EEG.preprocessed.residualArtifactRemoval.MARA.MARAinfo: structure containing 

more information about MARA classification; 

MARAinfo.posterior_artefactprob: posterior probability for each IC of being an 

artefact. 

MARAinfo.normfeats: <6 x nIC > features computed by MARA for each IC, 

normalized by the training data. The features are: (1) Current Density Norm, 

(2) Range in Pattern, (3) Local Skewness of the Time Series, (4) Lambda, (5) 

8-13 Hz, (6) FitError.  

EEG.preprocessed.residualArtifactRemoval.MARA.MARA_thre: cuttoff posterior 

probability for each IC of being an artefact while using MARA method; 

 

EEG.preprocessed.residualArtifactRemoval.ADJUST.check = ‘yes’: use ICA-based 

ADJUST method to remove residual artifacts; More details about ADJUST can 

be seen in Mognon A, Jovicich J, Bruzzone L, Buiatti M, ADJUST: An 

Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal 

features. Psychophysiology 48 (2), 229-240 (2011). 
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EEG.preprocessed.residualArtifactRemoval.ADJUST.ICs: number of ICA 

components to compute (default is 'pca' arg);  

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICANtrain: perform tanh() 

"extended-ICA" with sign estimation N training blocks; default is 0; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICAstop: ICA stop training 

when weight-change < this; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICAMaxSteps: max number of 

ICA training steps; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.ICAsphering: ['on'/'off'] flag 

sphering of data; default is ‘on’; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.artcomps: list of artifacted ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.horizcomps: list of horizontal 

eye movement (HEM) ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.vertcomps: list of vertical eye 

movement (VEM) ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.blinkcomps: list of eye blink 

(EB) ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.disccomps: list of GD ICs; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_DV: SVD threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.diff_var: SVD feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_K: TK threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.meanK: TK feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_SED: SED threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.SED: SED feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_SAD: SAD threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.SAD: SAD feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_GDSF: GDSF threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.GDSF: GDSF feature values; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.soglia_V: MEV threshold; 

EEG.preprocessed.residualArtifactRemoval.ADJUST.nuovaV: MEV feature values; 

 

EEG.preprocessed.residualArtifactRemoval.rPCA.check = ‘yes’: use robust PCA to 

remove residual artifacts; 

EEG.preprocessed.residualArtifactRemoval.rPCA.lambda: weight on sparse error 

term in the cost function; 

EEG.preprocessed.residualArtifactRemoval.rPCA.tol: tolerance for stopping criterion; 

EEG.preprocessed.residualArtifactRemoval.rPCA.maxIter: maximum number of 

iterations; 

 

EEG.preprocessed.residualArtifactRemoval.ASR.check = ‘yes’: use ASR method to 

remove residual artifacts; more details about ASR can be seen in the tool 

‘clean_rawdata’; 
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EEG.preprocessed.residualArtifactRemoval.ASR.burst_crit: standard deviation cutoff 

for removal of bursts (via ASR).A quite conservative value is 5; 

EEG.preprocessed.residualArtifactRemoval.ASR.burst_crit_refmaxbadchns: this 

number is the maximum tolerated (0.05-0.3) fraction of "bad" channels within a 

given time window of the recording that is considered acceptable for use as 

calibration data; 

EEG.preprocessed.residualArtifactRemoval.ASR.burst_crit_reftolerances: these are 

the power tolerances outside of which a channel in a given time window is 

considered "bad", in standard deviations relative to a robust EEG power 

distribution (lower and upper bound). Together with the previous parameter this 

determines how ASR calibration data is be extracted from a recording. Can also 

be specified as 'off' to achieve the same effect as in the previous parameter. 

Default is [-3.5,5.5]; 

 

EEG.preprocessed.Interpolation.check = ‘no’: skip bad channel interpolation and 

re-referencing to REST only (if have channel locations); 

EEG.preprocessed.Interpolation.comments = ‘re-referencing to REST based on 

3-concentric spheres head model’; 

 

EEG.preprocessed.RESITinterpolation.check = ‘yes’: use RESIT method to 

reconstruct bad channels; 

EEG.preprocessed.RESITinterpolation.badchanns: list of bad channels; 

EEG.preprocessed.RESITinterpolation.comments = ‘REST based on 3-concentric 

spheres head model’; 

EEG.preprocessed.SphericalSplinesInterpolation.comments = ‘re-referencing to 

REST based on 3-concentric spheres head model’; 

 

EEG.preprocessed.SphericalSplinesInterpolation.check = ‘yes’: use SSI method to 

reconstruct bad channels; 

EEG.preprocessed.SphericalSplinesInterpolation.badchanns: list of bad channels; 

 

EEG.preprocessed.QA.check = ‘yes’: QA after artifact removal; 

EEG.preprocessed.QA.comments = ‘QA after artifact removal’; 

EEG.preprocessed.QA.results: results of QA for artifact removed data; 

 

EEG.preprocessed.MarkBadBlock.check = ‘yes’ or ‘no’: marking or no marking 

residual bad block with unusually high or low amplitude using zscored standard 

deviation; 

EEG.preprocessed.MarkBadBlock.comments = ‘Marking residual bad block after 

artifact removal’; 

EEG.preprocessed.MarkBadBlock.zscoredGFP: global field power of z-scored 

standard deviation across channels; 
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EEG.preprocessed.MarkBadBlock.STDthreshold: standard deviation threshold; it is 

equal to the Z-score cutoff for robust channel deviation in QA. 

 

Links: 

Some EEG preprocessing tools: 

https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR)  

https://www.nitrc.org/projects/adjust/ 

https://github.com/methlabUZH/automagic 

https://github.com/germangh/eeglab_plugin_aar  

https://github.com/VisLab/EEG-Clean-Tools  

https://github.com/bwrc/ctap 

 

3.7 WB_EEG_CalcPower 

WB_EEG_CalcPower is a tool to calculate power indices using time-frequency 

analysis of EEGALB (using function timefreq()). Calculating power indices consists 

of (Fig. 5):  

[1] Specific event data can be extracted according to the input ‘eventlabel’. If the 

input ‘eventlabel’ is empty, all data will be used. If applicable, EEG segments in 

bad block (label 9999, marked by the tool WB_EEG_Mark) will also be rejected 

automatically, and NOT used to calculate power indices. 

[2] Specific event EEG signals will be divided into small epochs.  

[3] EEG data of each epoch (default is 5s epoch) was subjected to time-frequency 

analysis with Fast-Fourier Transform (FFT) to obtain the absolute EEG band 

power at each electrode in the specific bands. Each data epoch will be linearly 

detrended before time-frequency analysis. The power value is calculated by: 

2|| ||
2power

Y
Y

length of epoch signal
   

where Y is complex number calculated by FFT, ‖. ‖ is complex modulus 

operations (using ‘abs’ function of MATLAB). 

 

https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR)
https://www.nitrc.org/projects/adjust/
https://github.com/methlabUZH/automagic
https://github.com/germangh/eeglab_plugin_aar
https://github.com/VisLab/EEG-Clean-Tools
https://github.com/bwrc/ctap
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Fig. 5: Pipelines of calculating power indices of EEG data. (A) Calculating power 

indices of a specific event data. Step1: Specific event data are first extracted 

according to the input ‘eventlabel’ (e.g. label ‘22’). If applicable, EEG segments in 

bad block (label 9999, marked by WB_EEG_Mark) will also be rejected 

automatically, and NOT used to calculate power indices. Step2: Specific event EEG 

signals will be divided into small epochs. Step3: EEG data of each small epoch 

(default is 5s epoch) will be subjected to time-frequency analysis with Fast-Fourier 

Transform (FFT) to obtain the absolute EEG band power at each electrode in the 

specific bands. (B) Calculating power indices of all data. All data will be divided into 

small epochs first, and then data of each epoch (excluding bad blocks) will be used to 

calculate power indices. 

 

Default frequency bands are delta (Nuwer et al., 1994), theta (Nuwer et al., 1994), 

alpha1 (Malver et al., 2014), alpha2 (Malver et al., 2014), beta1 (Jobert et al., 2013; 

Malver et al., 2014), beta2 (Jobert et al., 2013; Malver et al., 2014), beta3 (Jobert et 

al., 2013; Malver et al., 2014), gamma1 (Jobert et al., 2013; Nuwer et al., 1994) and 
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gamma2 (Nuwer et al., 1994). Indices of power ratio (Kashefpoor et al., 2016; 

Snaedal et al., 2010; Thatcher et al., 2005) are r1, r2, r3, r4, r5 and r6, as well as peak 

of alpha frequency (PAF). 

Default list of 27 indices: 

delta: mean power across 1 - 4 Hz  

theta: mean power across 4 - 8 Hz  

alpha1: mean power across 8 - 10.5 Hz 

alpha2: mean power across 10.5 - 12.5 Hz 

beta1: mean power across 12.5 - 18.5 Hz  

beta2: mean power across 18.5 - 21 Hz  

beta3: mean power across 21 - 30 Hz  

gamma1: mean power across 30 - 40 Hz 

gamma2: mean power across 40 - 60 Hz 

fullband: mean power across 1-60 Hz 

relative power in specific band = power of specific band/total power across 

fullband. 

r1 = theta / (alpha1 + alpha2 + beta1); 

r2 = (delta + theta) / (alpha1 + alpha2 + beta1 + beta2); 

r3 = theta/alpha = theta / (alpha1+alpha2); 

r4 = theta/beta = theta / (beta1 + beta2 + beta3); 

r5 = delta/theta; 

r6 = alpha/beta = (alpha1 + alpha2) / (beta1 + beta2 + beta3); 

PAF (peak of alpha frequency) = max power in alpha (alpha1+alpha2) band. 

More details about power indices of EEG data can be seen in relative papers (Chen et 

al., 2008; Kashefpoor et al., 2016; Malver et al., 2014; Nuwer et al., 1994; Snaedal et 

al., 2010; Thatcher et al., 2005). 

 

Parameters 

epochLenth: Length of small epochs to calculate power. Unit is second. Default is 5s. 

Epochs less than epochLenth will be not used to calculate indices. If 

epochLenth is negative (Fig. 6), it means that if possible, data before event 

labels (eventlabel) will be used (no overlapped). 

eventlabel: Event label which means specific event data. If it is empty, all data will be 

used to calculate indices. If eventlabel is not found in events, NO data will be 

epoched and calculated. If structure event (eventlabel) doesn’t include 

duration, the duration will be equal to epochLenth. DO NOT contain blank 

spaces in the event label (e.g. S  22). Strings of events will be compared 

ignoring space characters. Default is empty (‘[]’). 

bandLimit: A string array with specific frequency bands. Default is 

‘[1,4],[4,8],[8,10.5],[10.5,12.5],[12.5,18.5],[18.5,21],[21,30],[30,40],[40,60],[

1,60]’. If it is ‘[]’, default bands will be used. Bands should be separated by 

comma. 
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bandName: A string array with names of frequency bands (separated by comma). 

bandName must be corresponding to bandLimit (e.g. bandName 1 is 

corresponding to bandLimit 1). Names of frequency bands are required and 

included in (‘delta’;’theta’;’alpha1’;‘alpha2’;’beta1’;’beta2’;’beta3’) for r1-r6 

and PAF, or included in (‘delta’;’theta’;’alpha’;’beta’) for r3-r6 and PAF. For 

relative power indices, ‘fullband’ must be included in bandName (‘fullband’). 

Default is 

‘delta,theta,alpha1,alpha2,beta1,beta2,beta3,gamma1,gamma2,fullband’. If it 

is ‘[]’, default band names will be used. 

seleChanns: String with indices of the selected channels (e.g. ‘[1:4,7:30]’), or ‘all’. 

Default is ‘all’. 

proportion: overlapped proportion for each segments/sliding windows. It should be 

[0,1). Default is 0 (no overlapped). 

srate: Sampling rate of EEG data. It can be automatically detected in EEG data, if it is 

‘[]’. But for ASCII/Float .txt File and MATLAB .mat File, users should fill the 

sampling rate by hand. Default is ‘[]’. 

grouplabel: Group label of subject. It may be used to statistical analysis in the future. 

Default is ‘[]’. 

 

 

Fig. 6: If epochLenth is negative, it means that if applicable, data before event labels 

(eventlabel) will be used (no overlapped). 

 

Note: EEG data will be imported as EEG structure using EEGLAB. EEG.data should 

be channels × time points OR channels × time points × epochs. If size 

of EEG.data is channels × time points × epochs (has been epoched), all 

data will be used to calculate power indices. If applicable, epochs in bad block 

(label 9999, marked by wb_EEG_Mark) will also be rejected automatically, 

and NOT used to calculate power indices. 
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Outputs 

 

For each subject, output is a MATLAB .mat file (named power_*) in which is a 

structure EEG_results including power indices, mean indices across epochs and 

parameters. 

EEG_results.type: type of results. i.e. ‘power’ 

EEG_results.filename: filename of EEG data; 

EEG_results.Power: power across frequency bands (channels×bands×epochs); 

EEG_results.Power_relative: relative power across frequency bands (channels×

bands×epochs); 

EEG_results.PAF : max power in alpha(alpha1+alpha2) band (channels×epochs); 

EEG_results.R1 : r1 (channels×epochs); 

EEG_results.R2 : r2 (channels×epochs); 

EEG_results.R3 : r3 (channels×epochs); 

EEG_results.R4 : r4 (channels×epochs); 

EEG_results.R5 : r5 (channels×epochs); 

EEG_results.R6 : r6 (channels×epochs); 

EEG_results.Block_percentage: percentage of EEG data used to calculate indices 

EEG_results.Power_mean: mean power across epochs (channels×bands); 

EEG_results.Power_relative_mean : mean relative power across epochs (channels

×bands); 

EEG_results.R1_mean : mean r1 across epochs (channels×1); 

EEG_results.R2_mean : mean r2 across epochs (channels×1); 

EEG_results.R3_mean : mean r3 across epochs (channels×1); 

EEG_results.R4_mean : mean r4 across epochs (channels×1); 

EEG_results.R5_mean : mean r5 across epochs (channels×1); 

EEG_results.R6_mean : mean r6 across epochs (channels×1); 

EEG_results.PAF_mean : mean PAF across epochs (channels×1); 

EEG_results.spectrum: frequency spectrum across each epochs (channels×freqs×

epochs); 

EEG_results.freqs: Frequencies of time-frequency analysis (1×freqs); 

EEG_results.spectrum_mean: mean frequency spectrum across each epochs 

(channels×freqs); 

EEG_results.grouplabel: group label of subject. It may be used to statistical 

analysis in the future. 

 

EEG_results.parameter.WaveletCycles: The number of cycles for the 

time-frequency decomposition. Default is using FFTs and Hanning window 

tapering; 

EEG_results.parameter.WaveletMethod: Wavelet method/program to use. Default is 

‘dftfilt3’: Morlet wavelet or hanning DFT (exact Tallon baudry); 
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EEG_results.parameter.TaperingFunction: FFT Tapering function is ‘hanning’ 

function; 

EEG_results.parameter.DetrendStr: ‘On’: Linearly detrend each data epoch before 

time-frequency analysis. 

EEG_results.parameter.bandLimit: An array with specific frequency bands; 

EEG_results.parameter.bandName: A cell array with band names; 

EEG_results.parameter.eventlabel: An event label which means specific data; 

EEG_results.parameter.selechanns: An array with selected channels; 

EEG_results.parameter.epochLenth: Length of small epochs. Unit is time point. 

EEG_results.parameter.srate: Sampling rate of EEG data. 

EEG_results.parameter.proportion: Overlapped proportion for each 

segments/sliding windows; 

EEG_results.parameter.chanlocs: channel locations. 

EEG_results.parameter.ref: reference of EEG data. 

 

Links 

 

NIT 

http://www.neuro.uestc.edu.cn/NIT.html  

 

EEGLAB 

http://sccn.ucsd.edu/eeglab/index.html  

 

3.8 WB_EEG_CalcERP 

WB_EEG_CalcERP is a tool to create averaged event related potential (ERP) for 

each EEG channel at scalp level. Calculating ERP consists of (Fig. 8): 

[1] Filter data using Hamming windowed sinc FIR filter. This step is optional, and 

default is no filtered (i.e. set passband as []). 

[2] Extract epochs (default is [-0.2 0.8] sec) and baseline correction ( [-0.2, 0] sec): A 

continuous EEG dataset will be converted to epoched data by extracting data 

epochs time locked to specified event types or event indices. If applicable, time 

locked events corresponding to correct-reaction marker will be extracted (i.e. 

marker1). In addition, events in bad block (label 9999, marked by 

WB_EEG_Mark) will also be rejected automatically. 

[3] Artifact rejection in epoched data using simple voltage threshold. Three criterions 

including amplitude, gradient and max-min criterions were used to reject artifact 

trials. 

[4] ERP will be obtained from averaged clean epochs (default is [-0.2 0.8] sec). 

 

http://www.neuro.uestc.edu.cn/NIT.html
http://sccn.ucsd.edu/eeglab/index.html
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Fig. 8: Pipeline of ERP analysis. (1) Raw EEG data with events. As an example, S22 

is a specified event type (e.g. target stimulus), and S222 is correct-reaction marker 

corresponding to S22 if applicable). (2) Filtering EEG data, if applicable. The data 

can be filtered first using Hamming windowed sinc FIR filter. (3) Extract epochs (e.g. 

[-0.2, 0] sec), baseline correction and artifact rejection. A continuous EEG dataset will 

be converted to epoched data by extracting data epochs time locked to specified event 

types or event indices. Then, baseline correction (e.g. [-0.2, 0] sec) and artifact 

rejection will be conducted on epoched data. Three criterions of simple voltage 
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threshold, including amplitude, gradient and max-min criterions, will be used to reject 

artifact trials. If applicable, time locked events corresponding to correct-reaction 

marker will be extracted only (i.e. marker1). In addition, events in bad block (label 

9999, marked by WB_EEG_Mark) will also be rejected automatically. (4) Averaging. 

ERP will be obtained from clean epoched data. 

 

Parameters 

event1: specified event types or event indices (e.g. event label). If event label is not 

found, NO data will be epoched and calculated. DO NOT contain blank spaces 

in the event label (e.g. S  22). Strings of events will be compared ignoring 

space characters. Default is ‘[]’. The letters are case-sensitive. 

epochlimits: epoch latency range [start, end] in seconds relative to the time-locking 

events. Default is ‘[-0.2,0.8]’ sec. 

valuelim_1: threshold of amplitude criterion to reject artifact trials: Lower and upper 

bound latencies for trial data. If one positive value is given, the opposite value 

is used for lower bound. For example, use [-100,100] microvolts (μV) to 

remove artificial epoch. Default is [-100,100] (μV). 

valuelim_2: threshold of gradient criterion to reject artifact trials: maximum allowed 

voltage step/sampling point. Default is 50 microvolts (μV). 

valuelim_3: threshold of max-min criterion to reject artifact trials: maximum allowed 

absolute difference in the segment/epoch. Default is 150 microvolts (μV). 

selechanns: number with indices of the selected channels (e.g. ‘[1:4,7:30]’ or ‘all’). 

Default is ‘all’. 

marker1: correct-reaction marker corresponding to the specified event (e.g. event1). 

DO NOT contain blank spaces in the marker1 (e.g. S  222). Default is ‘[]’. 

t1: duration (in seconds) before correct-reaction marker. Default is 2s. 

passband: passband of filtering (e.g. ‘[1,30]’). Default is NO filtered (i.e. ‘[]’). 

srate: sampling rate of EEG data. It can be automatically detected in EEG data. But 

for ASCII/Float .txt File or MATLAB .mat File, user should fill the sampling 

rate by hand. Default is ‘[]’. 

 

Note:  

 EEG data will be imported as EEG structure using EEGLAB. EEG.data should be 

channels × time points OR channels × time points × epochs. If size of 

EEG.data is channels × time points × epochs (has been epoched), all data 

will be used to create ERP. 

 Clean trials are satisfying 3 criterion of artifact rejection for each channel at same 

time. 

 

Outputs 

For each subject, a zip file which contain the ERP data will be generated (saved as 

ERP .set file which contains the ERP potentials, EEG.data with dimension channels 
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× time points × trials). The ERP .set file can be imported and used in EEGLAB. 

Following fields will be further added in the ERP .set file. 

 

EEG.eventlist: list of accepted events; 

EEG.erp: averaged event-related potentials for each channel; 

EEG.trials: No. of trials; 

EEG.xmin: Epoch latency limits [start] in seconds; 

EEG.xmax: Epoch latency limits [end] in seconds; 

EEG.epoch: filling with values of other events in the same epochs. 

 

 

3.9 WB_EEG_CalcNetwork 

WB_EEG_CalcNetwork is a basic tool to calculate EEG network between EEG 

channels at scalp level or source level. Calculating EEG network consists of (Fig. 7):  

[1] Specific event data can be extracted according to the input ‘eventlabel’. If the 

input ‘eventlabel’ is empty, all data will be used. If applicable, EEG segments in 

bad block (label 9999, marked by WB_EEG_Mark) will be rejected 

automatically, and NOT used to calculate network. 

[2] Specific EEG signals will be divided into small epochs. 

[3] EEG data of each epoch (default is 5-s epoch) was subjected to calculate 

correlation/coherence/PSI/PLV to obtain the EEG network across electrodes in 

the specific bands 
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Fig. 7: Pipelines of calculating EEG networks of EEG data. (A) Calculating EEG 

networks of a specific event data. Step1: Specific event data are first extracted 

according to the input ‘eventlabel’ (e.g. label ‘22’). If applicable, EEG segments in 

bad block (label 9999, marked by WB_EEG_Mark) will also be rejected 

automatically, and NOT used to calculate power indices. Step2: Specific event EEG 

signals will be divided into small epochs. Step3: EEG data of each small epoch 

(default is 5s epoch) will be subjected to calculate correlation/coherence/PSI/PLV to 

obtain the EEG network across electrodes in the specific bands. (B) Calculating EEG 

networks of all data. All data will be divided into small epochs first, and then data of 

each epoch (excluding bad blocks) will be used to calculate EEG networks. 

 

Connections can be defined as (Bob et al., 2008; Edagawa and Kawasaki, 2017; Lee 

and Hsieh, 2014; Xu et al., 2014): 

1. Pearson’s correlation: 
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( , )

( , ) ( , )

C i j
Corr

C i i C j j
 ; where C is the covariance matrix. 

2. Magnitude squared coherence. The magnitude squared coherence estimate is a 

function of frequency with values between 0 and 1 that indicates how well x 

corresponds to y at each frequency. The magnitude squared coherence is a 

function of the power spectral densities, Pxx(f) and Pyy(f), of x and y, and the cross 

power spectral density, Pxy(f), of x and y: 

2| ( ) |

( ) ( )

xy

xx yy

P f
Cohere

P f P f
  

3. Phase Synchronization Index (PSI): 

2 2cos( ( )) sin( ( ))PSI t t          

Where 
1 2( ) ( ) ( )t t t      is the instantaneous phase difference between two 

EEG signals for a particular frequency; <∙> means the temporal average. PSI 

tends to 0 for asynchronous processes and to 1 for phase locked systems. 

Considering real noisy data, neither 0 nor 1 is reached, but we can expect that the 

PSI for synchronized oscillations will be significantly larger than for 

unsynchronized processes. 

4. Phase Locking Value (PLV). For two EEG signals with data length L, the PLV is 

defined as:  

( )

0

1 L
i t

t

PLV e
L





   

The phase locking index is sensitive to phase change and its value ranges from 0 

to 1. The PLV =1 if and only if the condition of strict phase locking is obeyed. In 

contrast, the PLV = 0 for uniformly distributed phases. 

 

Default frequency bands are (Chen et al., 2008; Malver et al., 2014; Nuwer et al., 

1994; Thatcher et al., 2005): 

delta: 1 - 4 Hz 

theta: 4 - 8 Hz 

alpha: 8 - 12.5 Hz 

beta: 12.5 - 25 Hz 

high beta: 25 - 30 Hz 

gamma1: mean power acorss 30 - 40 Hz 

gamma2: mean power acorss 40 - 60 Hz 

fullband: 1 - 60 Hz 

 

Parameters 
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epochLenth: Length of small epochs to calculate power. Unit is second. Default is 5s. 

Epochs less than epochLenth will be not used to calculate indices. If 

epochLenth is negative (Fig. 2), it means that if possible, data before event 

labels (eventlabel) will be used (no overlapped). 

eventlabel: Event label which means specific event data. If it is empty, all data will be 

used to calculate indices. If eventlabel is not found in events, NO data will be 

epoched and calculated. If structure event (eventlabel) doesn’t include 

duration, the duration will be equal to epochLenth. DO NOT contain blank 

spaces in the event label (e.g. S  22). Strings of events will be compared 

ignoring space characters. Default is empty (‘[]’). 

bandLimit: A string array with specific frequency bands. Default is 

‘[1,4],[4,8],[8,12.5],[12.5,25],[25,30],[30,40],[40,60],[1,60]’. If it is ‘[]’, full 

band will be used. Bands should be separated by comma. 

seleChanns: String with indices of the selected channels (e.g. ‘[1:4,7:30]’), or ‘all’. 

Default is ‘all’. 

method: Method used to calculate EEG network. Default is 'psi'. 

‘corr’: Pearson’s correlation 

‘cohere’: Magnitude squared coherence 

‘psi’:   Phase Synchronization Index 

‘plv’:   Phase Locking Value 

proportion: overlapped proportion for each segments/sliding windows. It should be 

[0,1). Default is 0 (no overlapped). 

srate: Sampling rate of EEG data. It can be automatically detected in EEG data, if it is 

‘[]’. But for ASCII/Float .txt File and MATLAB .mat File, users should fill the 

sampling rate by hand. Default is ‘[]’. 

grouplabel: Group label of subject. It will be used to statistical analysis in the future. 

Default is ‘[]’. 

 

Note: EEG data will be imported as EEG structure using EEGLAB. EEG.data should 

be channels × time points OR channels × time points × epochs. If size 

of EEG.data is channels × time points × epochs (has been epoched), all 

data will be used to calculate EEG network. If applicable, epochs in bad block 

(label 9999, marked by WB_EEG_Mark) will also be rejected automatically, 

and NOT used to calculate network. 

 

Outputs 

For each subject, output is a MATLAB .mat file (network_*.mat) in which is a 

structure EEG_results including connection matrices, mean connection matrices 

across epochs, z-score connection matrices and parameters. The results can be used to 

calculate network measures based on graph theory using EEG tool 

WB_EEG_calcBasicNetIndices. 
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EEG_results.type: type of results, i.e. ‘network’; 

EEG_results.nettype: type of network; 

‘BU’: binary undirected network; 

‘BD’: binary directed network; 

‘WU’: weighted undirected network; 

‘WD’: weighted directed network. 

EEG_results.M: connection matrix (symmetric) across frequency bands. Size of M is 

channels × channels × epochs × frequency bands; 

EEG_results.M_zscore: Fisher's z-score connection matrix across frequency bands. 

Size of M_zscore is channels × channels × epochs × frequency bands; 

EEG_results.M_mean: mean connection matrix across epochs. Size of M_mean is 

channels × channels × frequency bands; 

EEG_results.M_zscore_mean: mean Fisher's z-score connection matrix across epochs. 

Size of M_zscore_mean is channels × channels × frequency bands; 

EEG_results.Block_percentage: percentage of EEG data used to calculate network. 

EEG_results.filename: filename of EEG data; 

 

EEG_results.parameter.bandLimit: an array with specific frequency bands; 

EEG_results.parameter.bandName: a cell array with band names; 

EEG_results.parameter.eventlabel: an eventlabel which means specific data; 

EEG_results.parameter.selechanns: an array with selected channels; 

EEG_results.parameter.epochLenth: length of small epochs. Unit is time point; 

EEG_results.parameter.srate: sampling rate of EEG data; 

EEG_results.parameter.method: method used to calculate EEG network; 

EEG_results.parameter.proportion: overlapped proportion for each segments/sliding 

windows; 

EEG_results.parameter.chanlocs: channel locations; 

EEG_results.parameter.ref: reference of EEG data; 

EEG_results.grouplabel: group label of subject. It will be used to statistical analysis in 

the future. 

 

3.10 WB_EEG_CalcNetMeasures 

WB_EEG_CalcNetMeasures is a tool to calculate network measures based on graph 

theory using BCT toolbox. MATLAB .mat file will be imported as EEG_results 

structure using WeBrain tool ‘WB_EEG_CalcNetwork’. EEG_reuslts should contain 

connection matrix M (EEG_results.M) and EEG result type (EEG_results.type) at 

least. First two dimensions of EEG_results.M should be channels/nodes × 

channels/nodes, and EEG_results.type should be ‘network’. More details of network 

measures can be seen in relative paper (Rubinov and Sporns, 2010) and BCT toolbox: 

https://sites.google.com/site/bctnet/Home. 

 

https://sites.google.com/site/bctnet/Home
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Parameters 

 

nettype: the type of compatible associated network. Default is using nettype saved in 

EEG_results (‘[]’）. Nettype can be : 

‘BU’: binary undirected network; 

‘BD’: binary directed network; 

‘WU’: weighted undirected network; 

‘WD’: weighted directed network. 

proportion: proportions of weights to preserve (proportional thresholding). ONLY 

used for nettype ‘BD’ or ‘BU’. Default is ‘[0.1:0.1:0.9]’. Range: proportion = 

1 (all weights preserved) to proportion = 0 (no weights preserved). 

flag:  flag = 1: calculate network measures for networks (EEG_results.M) of all 

epochs 

flag = 0: calculate network measures for mean networks 

(EEG_results.M_mean) across epochs (default). 

 

Links:  

BCT toolbox 

https://sites.google.com/site/bctnet/Home 

 

Outputs 

For each subject, output is a MATLAB .mat file (netmeasure_*.mat) in which is a cell 

NetMeasure including network measures and parameters. 

 

NetMeasure: a cell array which contains network measures (1 × frequencies, 

proportions×frequencies or proportions×epochs×frequencies) 

 

NetMeasure.nettype: the type of compatible associated network; 

NetMeasure.degree: node degree; 

NetMeasure.indegree: node indegree; 

NetMeasure.outdegree: node outdegree; 

NetMeasure.Kn: mean degree of network; 

NetMeasure.Kcost: cost of network; 

NetMeasure.Kn_in: mean indegree of network; 

NetMeasure.Kn_out: mean outdegree of network; 

 

NetMeasure.strength: node strength; 

NetMeasure.strength_m: mean node strength of network; 

NetMeasure.instrength: node instrength; 

NetMeasure.outstrength: node outstrength; 

NetMeasure.instrength_m: mean node instrength of network; 

NetMeasure.outstrength_m: mean node outstrength of network; 

https://sites.google.com/site/bctnet/Home
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NetMeasure.Cn: node clustering coefficient. The clustering coefficient is the fraction 

of triangles around a node and is equivalent to the fraction of node’s neighbors 

that are neighbors of each other; 

NetMeasure.Cn_m: mean clustering coefficient of network; 

NetMeasure.Ln: characteristic path length of network. The reachability matrix 

describes whether pairs of nodes are connected by paths (reachable). The 

distance matrix contains lengths of shortest paths between all pairs of nodes. The 

characteristic path length is the average shortest path length in the network; 

NetMeasure.Eglob: global efficiency of network. The global efficiency is the average 

inverse shortest path length in the network, and is inversely related to the 

characteristic path length; 

NetMeasure.Eloc: node local efficiency. The local efficiency is the global efficiency 

computed on the neighborhood of the node, and is related to the clustering 

coefficient. 

NetMeasure.Eloc_m: mean local efficiency of network; 

 

NetMeasure.BC: node betweenness centrality. Node betweenness centrality is the 

fraction of all shortest paths in the network that contain a given node. Nodes with 

high values of betweenness centrality participate in a large number of shortest 

paths; 

NetMeasure.BC_m: mean node betweenness centrality of network; 

 

NetMeasure.assort_coef: assortativity coefficient (undirected graph: strength/strength 

correlation). The assortativity coefficient is a correlation coefficient between the 

degrees of all nodes on two opposite ends of a link. A positive assortativity 

coefficient indicates that nodes tend to link to other nodes with the same or 

similar degree; 

NetMeasure.assort_coef1: assortativity coefficient (directed graph: 

out-strength/in-strength correlation); 

NetMeasure.assort_coef2: assortativity coefficient (directed graph: 

in-strength/out-strength correlation); 

NetMeasure.assort_coef3: assortativity coefficient (directed graph: 

out-strength/out-strength correlation); 

NetMeasure.assort_coef4: assortativity coefficient (directed graph: 

in-strength/in-strength correlation); 

 

NetMeasure.rich_club.rich_coef: rich-club coefficients at level (degree) k, 1×levels. 

The rich club coefficient at level k is the fraction of edges that connect nodes of 

degree k or higher out of the maximum number of edges that such nodes might 

share; 

NetMeasure.rich_club.proportion: proportions (0<p<1) of the strongest weights; 1×
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proportions 

NetMeasure.rich_club.rich_coef_proportion: rich-club coefficients of each proportion; 

proportions × levels 

NetMeasure.rich_club.Nk: number of nodes with degree > k; 

NetMeasure.rich_club.Ek: number of edges remaining in subgraph with degree > k. 

 

 

3.11 WB_EEG_CalcLeadfield_standardBEM 

WB_EEG_CalcLeadfield_standardBEM is a tool to generate conduction model of 

the head based on boundary element method (BEM) using standard MRI T1 image, 

and computes the forward model for many dipole locations on a 2D brain mesh or 

regular 3D grid and stores it for efficient inverse modelling using FieldTrip for EEG. 

The coordinates of head model is standard MNI space, and the electrodes will be 

aligned later to the existing standard head model. Some codes obtained from FieldTrip 

20181025 and EEGLAB were integrated. More details of leadfield calculation can be 

seen in the FieldTrip toolbox (http://www.fieldtriptoolbox.org/). 

 

Parameters 

 

seleChanns: number with indices of the selected EEG channels (e.g. ‘[1:4,7:30]’ or 

‘all’). Default is ‘all’; 

elecDirecFlag: 

      0: XYZ coordinates is the electorde array with their Cartesian x (the left ear is 

defined as -x axis), y (the nasion is the +y axis), z coordinates in three 

columns.  

1: XYZ coordinates is the electorde array with their Cartesian x (the nasion is 

the +x axis), y (the left ear is the +y axis), z coordinates in three columns. 

Default is 1. 

gridresolution: The grid resolution of dipoles (sources) inside the brain. If it is empty 

or <=0, the default dipoles are vertices which are little smaller than brain, and 

the orientations of dipoles are their normal vector directions, i.e. the normals 

of the brain mesh. If it >0 (unit is mm), the dipoles are distributed on regular 

3D grid inside brain mesh. The orientations of dipoles are X, Y and Z 

orientations, i.e. there are X, Y and Z oriented dipoles. Default is ‘[]’. 

 

Note:  

 A standard headmodel using ‘dipoli’ method based on BEM were used in this tool 

(Fig. 9). The headmodel contains a standard Boundary Element Method volume 

conduction model of the head that can be used for EEG forward and inverse 

computations. The geometry is based on the “colin27” template that is described 

further down. The BEM model is expressed in MNI coordinates in mm. A very 

http://www.fieldtriptoolbox.org/
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similar BEM volume conduction model (based on the same template data) is 

described and validated by Fuchs et al. in Clin Neurophysiol. 2002 May; 

113(5):702-12. More details can see: 

http://www.fieldtriptoolbox.org/template/headmodel/. 

 

vol: headmodel used in the function; 

vol.bnd: mesh of scalp, skull and brain; 

vol.cond: conductivity of tissues, order is [scalp, skull and brain]; 

vol.type: BEM method used (default is ‘dipoli’); 

vol.unit:unit of head model coordinates. 

 

Fig. 9: A standard headmodel used in the tool. The conductivity of tissues are: brain = 

0.33, skull = 0.0041 and scalp = 0.33; and the number of vertices of tissues are: brain 

= 1500 points, skull = 1000 points and scalp = 500 points. 

 

 The “colin27” anatomical MRI and its relation to the TT and MNI template atlas 

is described in detail on http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach 

The original construction of the averaged MRI is detailed in 

[http://www.ncbi.nlm.nih.gov/pubmed/9530404| Holmes CJ, Hoge R, Collins L, 

Woods R, Toga AW, Evans AC. Enhancement of MR images using registration 

for signal averaging. J Comput Assist Tomogr. 1998 Mar-Apr;22(2):324-33.] 

 Most of electrode location files are supported (More details can be seen in 

readlocs() in EEGLAB):  

'.loc' or '.locs' or '.eloc': polar coordinates; 

'.sph': Matlab spherical coordinates; 

'.elc': Cartesian 3-D electrode coordinates scanned using the EETrak software; 

'.elp': Polhemus-.'elp' Cartesian coordinates; 

'.elp': BESA-'.elp' spherical coordinates: Need to specify 'filetype','besa'; 

'.xyz': Matlab/EEGLAB Cartesian coordinates; 

http://www.fieldtriptoolbox.org/template/headmodel/
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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'.asc', '.dat': Neuroscan-.'asc' or '.dat' Cartesian polar coordinates text file; 

'.sfp': BESA/EGI-xyz Cartesian coordinates; 

'.ced': ASCII file saved by pop_chanedit() in EEGLAB. 

 

Links:  

 

The standard headmodel: 

http://www.fieldtriptoolbox.org/template/headmodel/  

 

FieldTrip toolbox and Forward Problem: 

http://www.fieldtriptoolbox.org/ 

http://www.fieldtriptoolbox.org/workshop/baci2017/forwardproblem/ 

http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_bem/?s[]=headmodel&s[]=ee

g&s[]=bem  

 

EEGLAB: 

http://sccn.ucsd.edu/eeglab/index.html  

 

Outputs 

For each subject/electrode file, output is a MATLAB .mat file (lf_*.mat) in which 

contains a structure lf including leadfield and parameter settings and a structure 

elec_aligned including aligned electrodes and parameter settings (Fig. 11). Meanwhile, 

a *.png figure file of alignment will be provided to check electrode alignment (Fig. 

10).  

 

lf: leadfield results; 

lf.leadfieldMatrix: leadfield matrix saved as (channels × sources); 

lf.label: channel labels; 

lf.dim: dimension of dipole (source) grid; 

lf.unit: unit of head model coordinates; 

lf.pos: positions of dipoles; 

lf.mom: nomrals of dipoles (3 × sources); 

lf.normals: nomrals of dipoles (sources × 3);  

lf.inside: Boolean value of whether the lf.pos inside the brain; 

lf.cfg: configuration of leadfield calculation; 

lf.leadfield: leadfield saved as cell; 

elec_aligned: aligned electrode coordinates; 

elec_aligned.elecpos: aligned electrode positions; 

elec_aligned.label: channel labels; 

elec_aligned.cfg: configuration of alignment. 

 

 

http://www.fieldtriptoolbox.org/template/headmodel/
http://www.fieldtriptoolbox.org/workshop/baci2017/forwardproblem/
http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_bem/?s%5b%5d=headmodel&s%5b%5d=eeg&s%5b%5d=bem
http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_bem/?s%5b%5d=headmodel&s%5b%5d=eeg&s%5b%5d=bem
http://sccn.ucsd.edu/eeglab/index.html
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Fig. 10: An example result of alignment. The left figure shows the electrodes are not 

on the scalp, and the right figure shows the electrodes are well aligned. 

 

 

Fig. 11: An example result of leadfield calculated by the tool. The left figure shows 

1500 sources/dipoles (black points) and electrodes (purple points).The red arrow 

shows a source/dipole with orientation (the dipole orientation is its normal vector 

direction). The right figure shows the leadfield distribution of the example dipole. 

 

3.12 WB_EEG_sourceimage 

WB_EEG_sourceimage is a tool to estimate source signals of scalp EEG/ERP data 

based on a forward model and inverse method (e.g. sLORETA). Source imaging 

estimation consists of (Fig.12): 

[1] Loading EEG data and check the items including data, channel locations, and 

sampling rate. 

[2] Calculating the leadfield matrix by solving forward problem based on selected 
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head model and channel locations. Or obtaining a user defined leadfield matrix. 

[3] If needed, passband filtering the EEG data. Default is no filtering. 

[4] Specific event data can be extracted according to the input ‘eventlabel’. If the 

input ‘eventlabel’ is empty, all data will be used. And, specific EEG signals will be 

divided into small epochs. If applicable, EEG segments in bad block (label 9999, 

marked by WB_EEG_Mark) will be rejected automatically, and NOT used to estimate 

sources. 

[5] EEG data of each epoch (default is 5-s epoch) is subjected to estimate sources to 

obtain the EEG signals in the source space using an inverse method such as 

‘sLORETA’ (Dale et al., 2000; Pascual-Marqui, 2002). 

[6] If needed, matching source signals to a brain template (e.g. AAL template) to 

obtain the averaged source signals of brain regions. 

[7] Saving the results of EEG source signals and parameters as a .set file. 
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Fig. 12: The pipeline of EEG source imaging. (1) Loading EEG data and check the 

items including data, channel locations, and sampling rate. (2) Calculating the 

leadfield matrix by solving forward problem based on selected head model and 

channel locations. Or obtaining a user defined leadfield matrix. The channel locations 

will be matched to the head model automatically. (3) If needed, passband filtering the 

EEG data. Default is no filtering. (4) Specific event data can be extracted according to 

the input ‘eventlabel’. If the input ‘eventlabel’ is empty, all data will be used. And, 

specific EEG signals will be divided into small epochs. If applicable, EEG segments 

in bad block (label 9999, marked by wb_EEG_Mark) will be rejected automatically, 

and NOT used to estimate sources. (5) EEG data of each epoch (default is 5-s epoch) 

is subjected to estimate sources to obtain the EEG signals in the source space using an 

inverse method such as ‘sLORETA’. (6) If needed, matching source signals to a brain 
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template (e.g. AAL template) to obtain the averaged source signals of brain regions. 

(7) Saving the results of EEG source signals and parameters as a .set file. 

 

Parameters 

 

epochLenth: Length of small epochs to calculate EEG source signals. Unit is second. 

Default is 5s. If epochLenth is negative, it means that if possible, data before 

event labels (eventlabel) will be used (no overlapped). 

eventlabel: Event label which means specific event data. Default is empty. If it is 

empty, all data will be used. If eventlabel is not found, NO data will be epoched 

and calculated. If structure event (eventlabel) doesn’t include duration, the 

duration will be equal to epochLenth. 

seleChanns: a string number with indices of the selected channels (e.g. ‘[1:4,7:30]’ or 

‘all’). Default is ‘all’. 

passband: Pass band of filtering. Default is no filtering (i.e. ‘[]’). 

ForwardMethod: Forward method used to calculate the leadfield matrix. 

ForwardMethod = 0: use a user defined leadfield matrix. While ForwardMethod 

= 0, the leadfield file must be inputed. 

ForwardMethod = 1: if EEG contains correct channel locations, it will 

automatically calculate leadfield matrix based on 3-concentric sphere head 

model. 

ForwardMethod = 2: if EEG contains correct channel locations, it will 

automatically calculate leadfield matrix based on based on real head modal 

(BEM modal) using FieldTrip.  

proportion: overlapped percentage for each segments/sliding windows. It should be 

[0,1). Default is 0 (no overlapped). 

SourceMethod: Inverse method used to calcualte EEG source signals. Default is 

‘sloreta’. 

‘sloreta’: EEG source imaging using sLORETA method (based on Dale et al. 

standardization) (Dale et al., 2000; Pascual-Marqui, 2002). The sLORETA 

is a tomographic method for electric neuronal activity, where localization 

inference is based on images of standardized current density. The method is 

denoted as standardized low resolution brain electromagnetic tomography 

(sLORETA). Noting that the Dale et al. standardization is used in the 

standardized estimation of sLORETA in the WeBrain. 

alpha: regularization parameter of inverse method.  

alpha >= 0: use user-defined value; 

alpha = ‘mean’: use averaged alpha with tikh regularization (default); 

alpha = ‘timevarying’: use time-varying alpha with tikh regularization. The time 

cost of ‘time-varying’ alpha is extremely high for EEG time courses. It is 

used for the situation of less topographies. 

elecDirecFlag: It is valid while calcuating leadfield. It is optional. 
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elecDirecFlag = 0: XYZ coordinates is the electorde array with their Cartesian x 

(the left ear is defined as -x axis),y (the nasion is the +y axis), z coordinates 

in three columns. 

elecDirecFlag = 1: XYZ coordinates is the electorde array with their Cartesian x 

(the nasion is the +x axis),y (the left ear is the +y axis), z coordinates in 

three columns. Default is 1. 

matchflag: Matching the source signals to a brain template (e.g. AAL template) to 

obtain the averaged source signals of brain regions. 

matchflag = [] (default): no matching; 

matchflag = ‘aal’: matching to AAL template and obtaining averaged source 

signals of brain regions; 

erpflag: Estimating the source signals for averaged ERP waves? It is useful for the 

segmented ERP epoch data (i.e. the demension of EEG.data is channels × time 

points × epochs). 

erpflag = 0 (default): estimating the source signals of each epoch; 

erpflag = 1: averaging trials and then estimating the source signals of averaged 

ERP waves. It is valid, while the data is epoched. 

leadfieldfile: a user defined lead field file (optional). It is valid, while the 

ForwardMethod = 0 only. The file could be a MATLAB .mat file, containing a 

matrix named ‘leadfield’ (channels × sources/dipoles, e.g. 60 channels × 

6144 sources/dipoles) or a MATLAB structure containing leadfield of 

x,y,z-orientations (e.g. leadfield.X with dimension channels ×  dipoles 

(x-orientation);leadfield.Y with dimension channels × dipoles (y-orientation); 

leadfield.Z with dimension channels ×  dipoles (z-orientation)) which is 

calculated by using the forward theory, based on the electrode montage, head 

model and equivalent source model. It can also be the output of 

ft_prepare_leadfield.m (e.g. lf.leadfield, dipoles contain x,y,z-orientations, 60 

channels × 6144*3 dipoles) based on real head modal (BEM modal) using 

FieldTrip. 

gridresolution：The grid resolution of dipoles (sources) inside the brain (optional). It is 

valid, while ForwardMethod = 2. If it is empty or <=0, the default dipoles are 

vertices which are little smaller than brain, and the orientations of dipoles are 

their normal vector directions, i.e. the normals of the brain mesh. If it >0 (unit is 

mm), the dipoles are distributed on regular 3D grid inside brain mesh. The 

orientations of dipoles are X, Y and Z orientations, i.e. there are X, Y and Z 

oriented dipoles. Default is empty. 

srate: Sampling rate of EEG data (optional). Default is obtained from EEG data (‘[]’). 

intermfile: A mat file contains a number of intermediate data which may be required 

by some methods in the WeBrain. It is no need to input.  

vol_bem1: a standard headmodel using ‘dipoli’ method based on BEM. It is 

optional, and is valid while ForwardMethod = 2. 

v0_aal: header information for AAL template image. 
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V.fname - the filename of the image. 

V.dim   - the x, y and z dimensions of the volume 

V.dt    - A 1×2 array.  First element is datatype (see spm_type). The 

second is 1 or 0 depending on the endian-ness. 

V.mat   - a 4×4 affine transformation matrix mapping from voxel 

coordinates to real world coordinates. 

V.pinfo - plane info for each plane of the volume. 

V.pinfo(1,:) - scale for each plane 

V.pinfo(2,:) - offset for each plane 

The true voxel intensities of the jth image are given by: val*V.pinfo(1,j) + 

V.pinfo(2,j) V.pinfo(3,:) - offset into image (in bytes). If the size of pinfo is 

3x1, then the volume is assumed to be contiguous and each plane has the 

same scale factor and offset. 

AAL: a matrix with brain region number of AAL template. It is optional, and is 

valid while matchflag = ‘aal’. 

Output: 

EEG: a structure of EEG containing results of EEG source imaging. 

EEG.data: EEG sources with dimension No. of dipoles × No. of time points. 

EEG.parameter.eventlabel: An eventlabel which means good quality data; 

EEG.parameter.selechanns: An array with selected channels; 

EEG.parameter.epochLenth: Length of small epochs, and unit is time point; 

EEG.parameter.srate: Sampling rate of EEG data; 

EEG.parameter.sourcemethod: Inverse method used to estimate EEG source 

signals; 

EEG.parameter.proportion: overlapped percentage for each segments/sliding 

windows; 

EEG.parameter.chanlocs: EEG channel locations on the scalp; 

EEG.parameter.ref: original EEG reference; 

EEG.parameter.leadfield: leadfield matrix;  

EEG.parameter.alpha: regularization parameter; 

EEG.parameter.elecDirecFlag: flag of channel directions; 

EEG.parameter.chaninfo: channel information. 

EEG.parameter.erpflag: flag of average ERP. 

EEG.parameter.headmodel: default headmodel, and details see below; 

EEG.parameter.ForwardMethod: forward method used in the tool. 

EEG.parameter.passband: pass band of filtering. 

EEG.parameter.gridresolution: the grid resolution of dipoles (sources) inside the 

brain. 

EEG.parameter.elec_aligned: aligned channel locations of electrodes. 

EEG.parameter.BrainRegionInd: brain region indices according to a template 

such as AAL. 

EEG.parameter.template: the template used to obtain the averaged source signals 
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of brain regions. 

EEG.parameter.matchflag: flag of matching source signals to a brain template. 

 

 

Important Issues in Source Imaging 

 

Forward model 

(1) 3-concentric sphere head model 

Default head model are based on 3-concentric spheres, in which the radii of spheres 

are normalized by the largest sphere. i.e. [0.87, 0.92, 1], corresponding to brain, skull 

and scalp. Conductivities of 3 concentric spheres are normalized by the largest 

resistivity, and default is [1, 0.0125, 1] (Fig. 13). A high-density canonical cortical 

mesh was used to define the dipoles. These meshes were obtained by warping a 

template mesh to the T1-weighted structural anatomy of an individual subject, as 

described in Mattout et al. (2007) (Mattout et al., 2007). This warping is the inverse of 

the transformation derived for the spatial normalization of the subject’s structural 

MRI image. The template mesh was generated by Fieldtrip 

(http://fieldtrip.fcdonders.nl/download.php), and was extracted from a structural MRI 

of a neurotypical male. The wrapping procedure provided a high-density mesh with 

33,001 vertexes, which was uniformly distributed on the gray-white matter interface. 

The mesh was further down-sampled to 6,144 vertexes (SPM MNI space) to reduce 

the computational load. More details see: Lei, X., et al. (2012). "Incorporating fMRI 

Functional Networks in EEG Source Imaging: A Bayesian Model Comparison 

Approach." Brain Topogr (Lei et al., 2012). Finally, the leadfield matrix was 

calculated analytically based on spherical harmonic spectra theory (Yao, 2000; Yao et 

al., 2004). 

 

headmodel details: default head model are based on 3-concentric spheres. 

headmodel.r: the radii of spheres which are normalized by the largest sphere. E.g. 

[0.87,0.92,1]. 

headmodel.type: head model type. It is concentric spheres 

headmodel.cond (optional): the conductivities (Brain, Skull and Scalp) which are 

normalized by the largest resistivity. E.g. For 3 concentric spheres, 

default is [1, 0.0125, 1]; 

headmodel.tissue (optional): tissues. E.g. [‘brain’ ‘skull’ ‘scalp’ ]; 

headmodel.o: center of the spheres (optional if origin).e.g. [0,0,0]. 

headmodel.terms: the constants for the Legendre expansion for EEG leadfields. 

The returning value is the constant for the third layer on the outer surface, 

e.g. K(3, r=R3). 

headmodel.sourcemesh.bnd: the source mesh of dipoles. 

 

http://fieldtrip.fcdonders.nl/download.php
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Fig.13: The default 3-concentric sphere head model in the WeBrain. A: the default 

geometrically triangular grid in the WeBrain which is based on the standard brain 

(MNI space) and contains 6144 dipoles. B: 3-concentric spheres and their 

conductivities. Nodes and their normal vector directions are showed. 

 

 

(2) Real head model based on Boundary Element Method 

The details about BEM and real head model used in the WeBrain are as follows: 

A standard headmodel using ‘dipoli’ method based on Boundary Element Method 

(BEM) were used in the WeBrain. The headmodel contains a standard BEM volume 

conduction model of the head that can be used for EEG forward and inverse 

computations. The geometry is based on the “colin27” template that is described 

further down. The BEM model is expressed in MNI coordinates in mm. A very similar 

BEM volume conduction model (based on the same template data) is described and 

validated by Fuchs et al. in Clin Neurophysiol. 2002 May;113(5):702-12. More details 

see : http://www.fieldtriptoolbox.org/template/headmodel/. More details about the real 

head model and BEM can also be seen in the 3.11 

WB_EEG_CalcLeadfield_standardBEM. 

 

The “colin27” anatomical MRI and its relation to the TT and MNI template atlas is 

described in detail on http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach. The 

original construction of the averaged MRI is detailed in 

[http://www.ncbi.nlm.nih.gov/pubmed/9530404| Holmes CJ, Hoge R, Collins L, 

Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for 

signal averaging. J Comput Assist Tomogr. 1998 Mar-Apr;22(2):324-33.] 

 

http://www.fieldtriptoolbox.org/template/headmodel/
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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Fig.14: The “colin27” anatomical MRI. 

headmodel: headmodel info 

headmodel.bnd: mesh of scalp, skull and brain. 

headmodel.cond: conductivity of tissues, order is [scalp, skull and brain]. 

headmodel.type: BEM method used (i.e. ‘dipoli’). 

headmodel.unit:unit of head model coordinates. 

 

Inverse Method 

 

(1) sLORETA 

The details of sLORETA can be seen in the paper: Pascual-Marqui, R. D. (2002). 

"Standardized low-resolution brain electromagnetic tomography (sLORETA): 

technical details." Methods Find Exp Clin Pharmacol 24 Suppl D: 5-12. 

The sLORETA tool is also available on http://www.uzh.ch/keyinst/loreta.htm. 

 

Brain Template 

(1) AAL template 

An automated anatomical parcellation of the spatially normalized single-subject 

high-resolution T1 volume provided by the Montreal Neurological Institute (MNI), 

named Automated Anatomical Labeling (AAL, Fig.15) template (Tzourio-Mazoyer et 

al., 2002), is used to get average source signals in the brain regions in the WeBrain. 

The list of brain regions can be seen in the Table 1. More details about the AAL 

template are available on https://www.gin.cnrs.fr/en/tools/aal/. 

http://www.uzh.ch/keyinst/loreta.htm
https://www.gin.cnrs.fr/en/tools/aal/
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Fig. 15: AAL template used in the WeBrain. 

 

Table 1: The list of brain regions for AAL template. 

No. 
Brain Region (abbreviation) 

L/R: left/right 
Full Names Chinese 

1 Precentral_L Precental gyrus 中央前回 

2 Precentral_R Precental gyrus 中央前回 

3 Frontal_Sup_L Superior frontal gyrus, dorsolateral 背外侧额上回 

4 Frontal_Sup_R Superior frontal gyrus, dorsolateral 背外侧额上回 

5 Frontal_Sup_Orb_L Superior frontal gyrus, orbital part 眶部额上回 

6 Frontal_Sup_Orb_R Superior frontal gyrus, orbital part 眶部额上回 

7 Frontal_Mid_L Middle frontal gyrus 额中回 

8 Frontal_Mid_R Middle frontal gyrus 额中回 

9 Frontal_Mid_Orb_L Middle frontal gyrus, orbital part 眶部额中回 

10 Frontal_Mid_Orb_R Middle frontal gyrus, orbital part 眶部额中回 

11 Frontal_Inf_Oper_L Inferior frontal gyrus, opercular part 岛盖部额下回 

12 Frontal_Inf_Oper_R Inferior frontal gyrus, opercular part 岛盖部额下回 

13 Frontal_Inf_Tri_L Inferior frontal gyrus, triangular part 三角部额下回 

14 Frontal_Inf_Tri_R Inferior frontal gyrus, triangular part 三角部额下回 

15 Frontal_Inf_Orb_L Inferior frontal gyrus, orbital part 眶部额下回 

16 Frontal_Inf_Orb_R Inferior frontal gyrus, orbital part 眶部额下回 

17 Rolandic_Oper_L Rolandic operculum 中央沟盖 

18 Rolandic_Oper_R Rolandic operculum 中央沟盖 
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19 Supp_Motor_Area_L Supplementary motor area 补充运动区 

20 Supp_Motor_Area_R Supplementary motor area 补充运动区 

21 Olfactory_L Olfactory cortex 嗅皮质 

22 Olfactory_R Olfactory cortex 嗅皮质 

23 Frontal_Sup_Medial_L Superior frontal gyrus, medial 内侧额上回 

24 Frontal_Sup_Medial_R Superior frontal gyrus, medial 内侧额上回 

25 Frontal_Med_Orb_L Superior frontal gyrus, medial orbital 眶内额上回 

26 Frontal_Med_Orb_R Superior frontal gyrus, medial orbital 眶内额上回 

27 Rectus_L Gyrus rectus 回直肌 

28 Rectus_R Gyrus rectus 回直肌 

29 Insula_L Insula 脑岛 

30 Insula_R Insula 脑岛 

31 Cingulum_Ant_L Anterior cingulate and paracingulate gyri 前扣带和旁扣带脑回 

32 Cingulum_Ant_R Anterior cingulate and paracingulate gyri 前扣带和旁扣带脑回 

33 Cingulum_Mid_L Median cingulate and paracingulate gyri 内侧和旁扣带脑回 

34 Cingulum_Mid_R Median cingulate and paracingulate gyri 内侧和旁扣带脑回 

35 Cingulum_Post_L Posterior cingulate gyrus 后扣带回 

36 Cingulum_Post_R Posterior cingulate gyrus 后扣带回 

37 Hippocampus_L Hippocampus 海马 

38 Hippocampus_R Hippocampus 海马 

39 ParaHippocampal_L Parahippocampal gyrus 海马旁回 

40 ParaHippocampal_R Parahippocampal gyrus 海马旁回 

41 Amygdala_L Amygdala 杏仁核 

42 Amygdala_R Amygdala 杏仁核 

43 Calcarine_L Calcarine fissure and surrounding cortex 距状裂周围皮层 

44 Calcarine_R Calcarine fissure and surrounding cortex 距状裂周围皮层 

45 Cuneus_L Cuneus 楔叶 

46 Cuneus_R Cuneus 楔叶 

47 Lingual_L Lingual gyrus 舌回 

48 Lingual_R Lingual gyrus 舌回 

49 Occipital_Sup_L Superior occipital gyrus 枕上回 

50 Occipital_Sup_R Superior occipital gyrus 枕上回 

51 Occipital_Mid_L Middle occipital gyrus 枕中回 

52 Occipital_Mid_R Middle occipital gyrus 枕中回 

53 Occipital_Inf_L Inferior occipital gyrus 枕下回 

54 Occipital_Inf_R Inferior occipital gyrus 枕下回 

55 Fusiform_L Fusiform gyrus 梭状回 

56 Fusiform_R Fusiform gyrus 梭状回 

57 Postcentral_L Postcentral gyrus 中央后回 

58 Postcentral_R Postcentral gyrus 中央后回 

59 Parietal_Sup_L Superior parietal gyrus 顶上回 

60 Parietal_Sup_R Superior parietal gyrus 顶上回 
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61 Parietal_Inf_L Inferior parietal, but supramarginal and angular 顶下缘角回 

62 Parietal_Inf_R Inferior parietal, but supramarginal and angular 顶下缘角回 

63 SupraMarginal_L Supramarginal gyrus 缘上回 

64 SupraMarginal_R Supramarginal gyrus 缘上回 

65 Angular_L Angular gyrus 角回 

66 Angular_R Angular gyrus 角回 

67 Precuneus_L Precuneus 楔前叶 

68 Precuneus_R Precuneus 楔前叶 

69 Paracentral_Lobule_L Paracentral lobule 中央旁小叶 

70 Paracentral_Lobule_R Paracentral lobule 中央旁小叶 

71 Caudate_L Caudate nucleus 尾状核 

72 Caudate_R Caudate nucleus 尾状核 

73 Putamen_L Lenticular nucleus, putamen 豆状壳核 

74 Putamen_R Lenticular nucleus, putamen 豆状壳核 

75 Pallidum_L Lenticular nucleus, pallidum 豆状苍白球 

76 Pallidum_R Lenticular nucleus, pallidum 豆状苍白球 

77 Thalamus_L Thalamus 丘脑 

78 Thalamus_R Thalamus 丘脑 

79 Heschl_L Heschl gyrus 颞横回 

80 Heschl_R Heschl gyrus 颞横回 

81 Temporal_Sup_L Superior temporal gyrus 颞上回 

82 Temporal_Sup_R Superior temporal gyrus 颞上回 

83 Temporal_Pole_Sup_L Temporal pole: superior temporal gyrus 颞极：颞上回 

84 Temporal_Pole_Sup_R Temporal pole: superior temporal gyrus 颞极：颞上回 

85 Temporal_Mid_L Middle temporal gyrus 颞中回 

86 Temporal_Mid_R Middle temporal gyrus 颞中回 

87 Temporal_Pole_Mid_L Temporal pole: middle temporal gyrus 颞极：颞中回 

88 Temporal_Pole_Mid_R Temporal pole: middle temporal gyrus 颞极：颞中回 

89 Temporal_Inf_L Inferior temporal gyrus 颞下回 

90 Temporal_Inf_R Inferior temporal gyrus 颞下回 
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4. Copyright: 

All copyright of the WeBrain reserved by the Key Laboratory for 

NeuroInformation of Ministry of Education, School of Life Science and Technology, 

University of Electronic Science and Technology of China. WeBrain is for 

non-commercial use only. It is free but not in the public domain. 
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